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EXPLANATION OF DISSERTATION FORMAT 

This dissertation contains the candidate's original work on spectral hole burning and 

fluorescence of a synthetic chlorophyll dimer, a bacterial antenna system and a bacterial 

reaction center. Chapter I contains one published paper describing a spectroscopic study of 

a synthetic special pair model. Chapter n contains one published paper which reports hole 

burning experiments performed on a strongly exciton coupled antenna system from the 

green sulfur bacteria Prosthecochloris aestuarii. Chapter III consists of one published 

paper describing photochemical hole burning experiments performed on the reaction center 

from the purple bacteria Rhodobacter sphaeroides. Each chapter contains an introduction, 

experimental methods, one paper and additional results. The references for the 

introduction, experimental methods and additional results are located at the end of that 

chapter. The references for each paper are found at the end of that paper. 
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GENERAL INTRODUCTION 

"Life is woven out of air by light" 

-L Moleschott 

Photosynthesis is the process by which living organisms convert solar energy to 

chemical energy. Photosynthesis is performed by both green plants, as most people know, 

and many species of bacteria. The chemical equation describing the event of 

photosynthesis is similar in each instance and can be written generally, 

2H2D + CO2 => (CH2O) + H2O + 2D (1) 

Where H2D is understood to be a hydrogen donor such as, water, hydrogen sulfide or 

lactate depending on whether one is discussing photosynthesis in green plants or bacteria. 

This equation is deceptively simple looking, yet it involves an enormous number of 

physical and chemical processes which are not all understood at present. These processes 

can be divided up in terms of time scale. This has been accomplished by Kamen [1]. He 

assigned three arbitrary "time eras" as follows: (1) Era of Radiation Physics (10"^^ to 10"^ 

s), (2) Era of Photochemistry (10"^® to 10"^ s), and (3) Era of Biochemistry (10"^ to 10"^ 

s). There are longer lived reactions occurring involving enzymatic reactions which are not 

considered in this scheme. The Era of Radiation Physics is concerned with excitation of 

chlorophyll (bacteriochlorophyll) molecules and the transferring and/or sharing of that 

energy among other chlorophyll molecules. This would include the processes of 

intersystem crossing, excitation energy transfer, fluorescence and trapping of energy [2]. 

The second era. Photochemistry, would include primary oxidation-reduction reactions or 

charge separation processes. The last era. Biochemistry, involves reactions such as: the 

reduction of NADP^, oxygen evolution, carbon flxation and cyclic photophosphorylation 

(ATP production). These are, of course, general categories and involve some temporal 
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Figure 1. Chlorophyll a and Bacteriochlorophyll a structure. Axes X and Y represent the 

principal electronic transitions. Dotted lines represent delocalized electrons 
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overlap; other authors have discussed photosynthesis in different ways [2-8]. The bulk of 

this dissertation will be concerned with the time era of Radiation Physics. 

~5.2xlO^^ kJ/year reaches the earth's surface from the sun of which ~50% is of 

wavelengths that are useful for photosynthesis [3]. The wavelength range of this light is 

300-1150 nm. The longer wavelength light (>1150 nm) is absorbed by atmospheric water 

vapor and carbon dioxide while the shorter wavelength light (<300 nm) is is absorbed by 

ozone and other molecules (N2) [4]. Of the 50% of the total energy incident upon the earth 

only .1% (3xl0^^kJ/Year) is converted to organic matter by photosynthesis, while the 

remaining portion is re-radiated as heat [3]. The percentage of the photosynthetic activity 

that occurs on the land and in the sea is split evenly. 

The basic structure responsible for converting the photons from the sun into 

photochemical energy, in both green plants and bacteria, has the generic name of the 

photosynthetic unit (PSU). Its size varies depending on the species [9] and its consists of a 

number of antenna molecules, usually chlorophylls (but not always), and a reaction center. 

The antenna molecules, as the name implies, absorb photons and transfer this energy to the 

reaction center which initiates the formation of a charge separated state. This charge 

separated state enables the electron to be mobile and it "migrates" along the electron 

transfer chain to initiate the primary oxidation-reduction reactions. 

The composition of the antenna for the PSU varies depending on the species and can 

include: Bchl a, Bchl b, Bchl c, Bchl g, BPheo a, BPheo b, Chi a, Chi b, Chi c, Pheo a, 

Pheo b, Phycocyanin, Phycoerythrin, Allophycocyanin, carotenoid a and P and 

Xanthophylls [3] (see Fig. 1 for the structure of chlorophyll). Any single species will 

usually have several of the above mentioned types of antenna molecules. This allows for 

the more efficient usage of the sun's energy, since these molecules have a variety of 

energies for their Sj<—Sg transitions ranging from ~450 to 900 nm(in their raonomeric 

forms) [3], thus the solar spectrum is covered fairly completely. The number of antenna 

molecules to reaction center in a PSU varies from as few as 50 to as many as 1000 [2,3] 

(see Fig. 2), but this is a topic still under debate. The crux of the debate centers around the 

definition of PSU [2,3]. 
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Figure 2. Different representations of the PS Us of the major classes of photosynthetic 

organisms. The numbers of various pigments should be viewed as approximate 
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The structure of the reaction center (RC) for several species of photosynthetic 

bacteria have been obtained via single crystal x-ray diffraction [10-13], but other than these 

two species of bacteria the RC is a relatively unknown entity (in terms of its structure). For 

green plants two RC, or more precisely, two primary electron donors (FED) are known to 

exist, photosystem I (PSI) and photosystem II (PS II) [2,3,9]. These two FED are 

connected via an electron transport chain (see Fig. 3). 

The FED in any PSU absorbs at a lower energy than any other entity in the PSU 

(antenna or accessory molecules). This facilitates the excitation energy transfer from the 

antenna to the FED by making this a "downhill" energy process. In most cases the FED is 

simply denoted by P(NUM), where NUM is the approximate absorption maximum for the 

FED. This somewhat misleading in that this designation does not specify what temperature 

or solvent the information pertains to. For example F870 is the FED for Rhodobacter 

sphaeroides, a purple photosynthetic bacteria, and it absorbs -870 nm at room temperature 

in glycerol/water (2:1). However, it absorbs at ~860 nm in PVOH films at room 

temperature and at ~ 890 nm in glycerol/water at 4.2 K [14]. Thus, the designations of 

P700, P865 and P960 for the PEDs in PS I, Chloroflexus aurianticus and 

Rhodopseudomonas viridis, respectively, should be viewed cautiously in terms of 

providing absorption maxima, but these numbers do give a general idea of the absorption 

maxima. 

Figure 4 is the absorption spectrum for the RC from the photosynthetic bacteria Rb. 

sphaeroides, T=4.2 K. This spectra displays only the Qy (Sj^-Sg) spectral region. As 

was mentioned earlier the lowest energy absorbing feature is the FED (-890 nm) and the 

other two bands represent accessory pigments from the RC (not antenna). The chlorophyll 

contained in the RC of this species is Bchl à, and BPheo a is also present. The two lowest 

energy features, -890 nm and -800 nm, are both due to Bchl a but a huge red shift (shift to 

lower energy), -1300 cm"^, separates the two. From structural information available 

[12,13] on this RC excitonic interactions are thought to play a significant role in this red 

shift. Additional information can be unlocked from the absorption spectrum concerning 

homogeneous widths, intermolecular and intramolecular vibrational frequencies, low 
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frequency lattice vibrations (phonons), electronic excitation transport times and the extent 

of correlation between coupled molecular states using site selective spectroscopies. 

Site selective spectroscopies include spectral hole burning and fluorescence line 

narrowing. Both of these techniques use a laser to obtain single site information from an 

inhomogeneously broadened absorption spectrum. Both of these techniques utilize dilute 

samples (~10'^ M) in amorphorus hosts. Fluorescence line narrowing spectroscopy was 

initiated by Szabo [15] and Personov et al. [16] who worked on inorganic (ruby) and 

organic doped solids, respectively. Fluorescence line narrowing (FLN) has been the 

subject of several excellent review articles [17,18]. A narrow line laser is used to 

selectively excite a subset of the molecules in the inhomogeneously broadened profile, a 

site, for the Sj<-So absorption band (see Fig, 5) at 4.2 K. For this origin band excitation 

the FLN spectrum consists in part of a series of relatively narrow (few cm"^) fluorescence 

lines. These lines are displaced from the excitation frequency by an amount of energy 

equal to a vibrational mode of S^, for origin excitation. Their intensity relative to their 

phonon side band is governed by the strength of the linear electron-phonon coupling 

(Huang-Rhys factor, S). The widths of the zero-phonon vibronic lines are determined by 

the uncertainty broadening due to vibrational relaxation from the Hnal vibrational state and 

incomplete site correlation between the zero-point of S j and the vibrational manifold of 

Sq. This technique has been applied to a variety of systems including DNA adducts 

[19,20], photosynthetic pigments in glasses [21-24], proteins [25,26] and etiolated leaves 

[27,28]. By using excitation in the spectral region of the Sj vibrational manifold the 

vibrational frequencies of the state can also be obtained. Excitation into higher 

electronic levels yields broad featureless spectra due to loss of cor/elation between 

electronic levels [18]. 

Spectral hole burning provides information similar to FLN but is more powerful in 

that it can give more detailed information concerning excited state dynamics, among other 

useful quantities [29]. In hole burning a narrow line laser irradiates in the 

inhomogeneously bi'oadened Sj<—SQ profile and provides energy to the molecules 

absorbing there. These molecules can undergo hole burning in one of two ways. They 
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may experience a change in their chemical make-up, photochemistry, as has been observed 

for color centers [30], free base porphyrin [31], RC of photosynthetic bacteria [14,32,33] 

and H2-phthalocyanine [34,35]. This type of hole burning is termed photochemical hole 

burning (PHB). A second type of hole burning is called nonphotochemical hole burning 

(NPHB) or photophysical hole burning. It involves a change in the microenvironment 

around the solute molecule so that it absorbs either slightly higher or sligthly lower in 

energy. In PHB the product (antihole) typically absorbs much further away from the 

original site [36,37]. Whatever the mechanism the result is a dip or "hole" in the 

absorption spectrum whose width, providing the experiment has been done properly, can be 

related to the excited state lifetime by the following expression, 

1/X2=1/(2xi)+1/X2 (2) 

Where T2 is the total dephasing time (X2=(7tAvjj)'^), Xj is the homogeneous lifetime and X2 

is the pure dephasing time. The experiment must be performed with a laser whose width is 

less than the homogeneous width, with a sufficiently low bum intensity and such that only 

a shallow zero-phonon hole (ZPH) (^S% AOD) is created in order to obtain accurate 

dynamical information. The measured hole width is I/X2 (in cm'*) and can be directly 

related to the excited state lifetime, Xj, in the cases where the hole burning is much faster 

than the pure dephasing. It is which is of interest for photosynthetic pigments. Hole 

burning has also been accomplished in the fluorescence excitation profile by using two 

lasers in the process [21]. 

Spectral hole burning as applied to photosynthetic systems can provide several 

important pieces of information. First, hole burning can provide detailed information 

concerning vibrational modes (frequencies, Franck-Condon factors) for the Sq=>S2 

absorption band. This can indicate which modes may play a role in electronic excitation 

transport (EET) and by comparing with information available on the same pigment in an 

"urmatural" host (such as a glass) the extent of interaction (coupling) with the protein can 

be investigated. The role of the protein in energy and electron transfer is still a much 
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debated subject, but it is generally acknowledged that the protein plays an important role. 

Hole burning can also be used to determine the extent of linear electron-phonon coupling 

for the optical transition to protein phonons. Phonons for chlorophyll-protein systems 

being of fairly low frequency, ^35 cm"^ [38-41]. The strength of the coupling to the 

protein phonon is an important point for considering the mechanism of EET [38]. Lastly, 

the degree of inhomogeneou: broadening can be determined via hole burning as well. The 

process of hole burning is shown in Fig. 6 for both mechanisms (photochemical and 

photophysical). A large variety of systems have been shown to undergo hole burning 

[26,29-43]. 

Holes can be persistent or transient in nature. Persistent holes can last indefinitely at 

4.2 K [37]. The length of time which the transient hole can be observed depends on its 

bottleneck state. This bottleneck can be the triplet state in photophysical hole burning or, 

in photochemical hole burning, the cation or anion of the molecule under study. For free 

base porphyrin the photoproduct is a tautomer [31]. For photosynthetic systems both types 

of holes have proved to be of importance [29]. 

Pure dephasing and spectral diffusion can play significant roles in the measured 

holewidth under certain circumstances [36,37,43-45]. These processes, as well as, 

spontaneous hole filling and laser induced hole filling can interfere with the ability to 

determine T| cleanly. The mechanisms for these processes have been studied for organic 

laser dyes in polymers [42,46,47]. When the experiment is performed the time frame 

between burning and probing must be controlled so that spontaneous hole filling is 

minimized. Hayes and Small [48] have proposed that two level systems (TLS) can be used 

to model photophysical hole burning with a phonon assisted tunneling process connecting 

the glassy states TLS. TLS being utilized previously to describe other physical phenomena 

in glasses [49,50]. 

The application of the spectral techniques of fluorescence line narrowing and hole 

burning to photosynthetic pigments, both synthetically prepared and naturally occurring, is 

the object of this study. A primary electron donor synthetic model, an antenna-protein 

complex and a reaction center-protein complex are the specific subjects of this study. 
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SECTION 1. 

A SPECTROSCOPIC STUDY OF A SYNTHETIC MODEL 

OF THE SPECIAL PAIR 



www.manaraa.com

14 

INTRODUCTION 

Interest in the primary charge separation process and the excited electronic state 

structure of photosynthetic reaction centers (RC) has, for many years, stimulated 

discussions as to whether the primary electron donor (FED) is of a monomer or a dimer. 

There has been support for both monomer [1-3] and dimer [4-6] of various chlorophylls 

molecules for the FED in green plants. The FED in photosynthetic bacteria had been 

described as primarily dimeric in nature [2,7] before the recent x-ray structural 

determinations for Rhodopseudomonas viridis [8-10] and Rhodobacter sphaeroides [11-

13]. Even with the structure determinations for the two species of photosynthetic bacteria, 

the structure of F* (the excited electronic state of the FED) has not been elucidated fully. 

The role of the protein environment of the RC for both green plants and photosynthetic 

bacteria is not yet clear. Is the protein merely a "glue" to hold the pigments together or 

does it mediate the energy and electron transfer in the RC? Because of the complexity of 

the RC in both plants and bacteria, and also since the structure of the bacterial RC was not 

known until 1984 [8], the approach of constructing, synthetically, molecular systems that 

mimic the optical, electronic, magnetic and redox properties of real photosynthetic systems 

evolved and has flourished even after the structure determinations of the bacterial RC [8-

13]. The sheer variety and number of model systems [14-43] that have been constructed is 

most impressive. 

Model systems, which are comprised either entirely or partly of chlorophyll 

molecules [14-32], as well as, other types of porphyrins [33-43] have been the subject of 

several recent review articles [44-47]. The goal of the majority of these models was to 

provide an entity that mimicked the capabilities of the primary electron donor [14-32,34-

37,39-42]. However modelling of the antenna molecules, which serve to funnel the energy 

to the FED state, received attention as well [14]. Even when considering the models just 

for the FED the number is vast [14-32,34-37,39-42]. It is the object of this section to 

discuss the study undertaken on one of these synthetic models, but it is important to 

understand why this molecule was constructed in the specific manner that it was. To best 
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understand this, several of the earlier molecules and systems that were built to mimic the 

behavior of the FED in green plants and photosynthetic bacteria will be described and 

discussed. By analyzing the abilities and limitations of the earlier models the logic behind 

the synthesis of the molecule studied in this work can be seen. 

The most important early experimental result concerning the FED for both green 

plants and photosynthetic bacteria was the red shift exhibited in the absorption spectra. For 

example, Chi a absorbs -670 nm while the FED for FSI absorbs -700 nm [15]. 

Fhotosynthetic bacteria have an even more pronounced red shift for the FED [19]. 

Mimicking this redshift, as well as, modelling other experimentally observed properties 

was the goal of the many groups synthesizing model systems. 

Shipman et al. [17] proposed in 1976 a model for F700, the FED in photosystem I 

for green plants, which consisted of two Chi a molecules held together via hydrogen 

bonding and ligand-Mg interactions (see Fig. 1). A number of molecules were suggested to 

be capable of providing the "glue" holding the Chi a molecules together but only ethanol 

data was presented [17]. This system gave an absorption maximum for the S J«-SQ (Qy) 

transition at 700 nm which is where F700, the FED for green plants, was thought to absorb. 

The ESR signal from a sample of this molecular assembly was gaussian in shape and was 

7.5 G wide. The absorption maximum and ESR signal match those from the F700 in 

Chlorella vulgaris [6,48]. This system was thought to possess C2 symmetry, although this 

was experimentally unconfirmed, with the two Chi a macrocycles being parallel with ring 3 

and 5 overlapping and their ji systems being 3.6 A apart (in the ring 3 and 5 area). The 

center-to-center distance was estimated to be 8.9 A. The -OH functional group served to 

both coordinate to one of the Mg ions, via one of the lone pairs of electrons on the oxygen, 

and hydrogen bond to the C-9 keto group oh the other Chi a. Similarly, a second ethanol 

molecule aided in the formation in the exact same manner reversing the roles of the two 

Chi a molecules. This model relied on "solvent assembly" for its construction. A solution 

of ethanol (.14 M) cooled past the glass formation temperature resulted in a gradual change 

in both absorption and the IR spectra from that of monomer Chi a to that of the dimer 

described above. This self-assembled or solvent-assembled system was first observed by 
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Figure 1. Model for primary electron donor in green plants (P700) by Shipman et al. [17] 
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Brody and Brody [49], but extensive investigative work concerning its properties was not 

undertaken until Shipman et al. did so [17]. 

This model was attractive for several reasons. Importantly it did absorb in the 

proper position (700 nm) of the spectrum and its ESR mimicked that of a real green plant 

system's FED [6,48]. The type of interactions necessary to form it were possible in the 

protein environment of the leaf it was reasoned, since amino acid residues could provide 

the -OH, -NH, and -SH functional groups necessary. Furthermore, the species fluoresced at 

720 nm which was similar to that observed for PS I in green plants [17]. It was thought 

that the proposed geometry of this molecule (C2), as well as, the closeness of the two 

chlorophylls composing it would stabilize an unpaired electron. This was considered a 

factor in support of the model since delocalization of the unpaired electron been observed 

for P700'*' in green plants [6,48]. 

There were several drawbacks of this assembly. The lack of a well defined structure, 

although a structure had been proposed it was not experimentally confirmed [17]. Also the 

solvent conditions for assembly, although reasonable in terms of the protein providing the 

functional groups necessary to facilitate the two molecules, were in fact unrealistic. The 

nonaqueous environment called for would be difficult to find in a living cell, especially, in 

view of Chi a's nature as a hydrophilic molecule [SO]. Despite its deficiencies this early 

model was successful in showing that excitonic interactions between closely situated 

chlorophyll molecules could be responsible for the observed red shifted absorption spectra. 

A second model (see Fig. 2) which was constructed by Boxer and Closs [IS] shortly 

after the system discussed above is similar to it but improves on some of its shortcomings. 

It consists of two molecules of methyl pyropheophorbide a transesterfied with ethylene 

glycol to yield the glycol monoester. Thé magnesium was then inserted back into the 

pheophytin ring. The molecule exhibited monomer-like absorption and fluorescence 

characteristics when in a solution of benzene and pyridine. When in a solution of wet 

benzene (containing water) the absorption maximum shifted from 666 to 696 nm and the 

fluorescence maximum shifted to 717 nm. The pyridine served as a strong ligand for the 
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Figure 2. Structure for covalently linked dimer of Chl a by Wasielewski et al. [16]. This 

is very much the same as the model prepared by Boxer and Closs [15] 
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magnesium in the first case. A structure in which the two Chi a macrocycles fold back 

onto one another in such a way that a pair of water molecules can bind them together was 

proposed by Boxer and Closs [15]. The water molecules coordinated to the Mg ion and 

hydrogen bonded to the C-9 keto group in a fashion similar to that described for the 

ethanol-Chl a model of Shipman et al. [17]. C2 symmetry was again proposed and 

collaborated by available NMR data showing one set of resonances (at least on an NMR 

time scale). A connecting chain consisting of 10 atoms was estimated to be long enough to 

allow the folding to occur. 

A second spectroscopic study of an ahnost identical molecule (pyrochlorophyll a 

were replaced by chlorophyll a) (see Fig. 2) was undertaken at approximately the same 

time by Wasielewski et al. [16]. This study confirmed the experimental observations of 

Boxer and Closs [15]. The study of Wasielewski et al. [16] went further in that other, 

nucleophilic, hydrogen bonding molecules, in addition to water, were demonstrated to 

promote the folding. Primary alcohols (methanol, ethanol) and primary alkanethiols were 

stated as being effective in this role [16]. 

One of the shortcomings of the first model discussed, that of forming in a 

nonaquaeous environment, was overcome in this second system. The structure of the 

molecule seems better established (with the NMR data), but the dependence of the system 

on solvent assembly still made it less than a perfect model for the FED for green plants. 

The red shifted absorption maximum was obtained for this system as well. 

The last model system which will be discussed consists of a trio of zinc or 

magnesium containing pyrochlorophyllide a molecules covalently linked in a 

trio(hydroxymethyl) ethane triester (see Fig. 3). This was constructed and reported on by 

Yuen et al. [14]. It was meant to serve as a crude model for an antenna and the FED of 

green plants [14]. In nucleophillic (noohydrogen bonding) solvents this molecule assumes 

an open configuration with each chlorophyllic molecule projecting away from the central 

"hub" (ethane triester backbone) and not interacting with one another. Upon the addition of 

a small amount (.1 M)'of hydrogen bonding nucleophile in a nonnucleophillic solution the 
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molecule would fonn a closed configuration which involves the crosslinking of two of the 

chlorophyll molecules. The third molecule would remain free in this type of solution. 

The absoiption and fluorescence properties of this unusual molecular assembly were 

similar to that for the FED of PSI and its antenna. The absorption maximum for the folded 

pair of molecules was 685 nm, and the entire assembly (when it was 100% converted to the 

folded config.) fluoresced at 712 nm. The fluorescence peak represented very complete 

energy transfer to the FED model from the antenna molecule. If the energy transfer were 

not very efficient then fluorescence from the antenna chlorophyll would be observed, 

which did not occur [14]. 

This molecular assembly was a clever model for the antenna-FED in FS I and its 

property of efficient energy transfer between "antenna" and "FED" is intriguing, however 

the dependence upon solvent assembly persists. 

The need for an effective model system which did not depend upon the solvent for 

construction was clear. Even after the elucidation of the structure of the bacterial RC the 

need for models of the FED, a special pair(SF) in the case of the bacterial RC, was not 

diminished. The study of models of the SF , which could now be much more accurately 

built, could still give valuable information concerning singlet excitation, charge 

delocalization and formation of charge transfer states. Even with the exact composition 

and structure of the bacterial RC known the precise role of the solvent (protein) in the 

process of charge separation was not totally clear. 

The need to have a SF model that was solvent independent in regard to its geometry 

was clear. In addition, the recent experiments on the RC of Rps. viridis and Rb. 

Sphaeroides using photochemical hole burning [51-55] and Stark effect spectroscopy 

[56,57] suggested that excitation of the SF results in an excited state with some charge 

transfer(CT) character. Since the SF in the RC is made of identical chromophores in C2 

symmetry the formation of a CT state is strictly speaking forbidden. The protein, however, 

may provide the asymmetry necessary to promote the formation of a CT state. With the 

preceding informatiota in mind Johnson et al. [58] constructed the SF model system 

featured in this study and investigated the solvent polarity dependence of the excited state 
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absorption and emission properties. Their goals when constructing this "facsimile" for the 

SP were " (1) the distance between the two chromophores of the dimer should be fixed; (2) 

the structure of the dimer, and therefore the monomer-monomer distance, must be solvent 

independent; (3) the molecule should have C2 symmetry similar to that of the SP; (4) the 

orientation of the transition dipoles of each chromophore should be as much like that in the 

SP as possible; (5) the two chromophores must be held close to one another; (6) the two 

chromophores must be electronically coupled; and (7) the two macrocycles should be in an 

edge-to-edge conformation rather than face-to-face" [58]. To that end they constructed a 

covalently bonded dimer of methyl pyrochlorophyllide a. It is unfortunate that their model 

proved not to have a rigid structure as was intended, however the system did exhibit 

extremely interesting excited state dynamics and was a rewarding molecule to study 

regardless. 

Strictly speaking, a model for the SP should be constructed of BchI a or b, but these 

are more chemically unstable [19] then methyl pyrochlorophyllide a and so the latter was 

used. The methyl pyrochlorophyllide a is very similar to Bchl a or b, differing only in the 

absence of the non-polar phytyl chain and a couple of other minor changes in the 

substituient groups on the macrocycle. The synthesis of SP models which use Bchl a orb 

has received less attention [19,22] than with Chi a or Chi a derivatives [14-18,20,21,23-

31]. The basic properties of the molecules in regard to forming a C-T state should not be 

affected by these minor changes in molecular structure since the 7t-electron systems remain 

essentially unchanged. 

The experimental data obtained by Johnson et al. [58] using picosecond 

spectroscopy is reviewed thoroughly in paper I contained in this section, and consequently 

will not be reviewed here. It was obvious that their results were very intriguing and the 

dynamical models which they considered to explain their results were likewise interesting, 

but they experienced some difficulties in fitting all their results to any one of their 

dynamical models. With these facts in mind, we undertook experiments involving T-

dependent absorption, fluorescence excitation, and frequency domain fluorescence studies 
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of this synthetic dimer in order to fiulher explore the nature of the absorbing and emitting 

species and their electronic states and how they depend on the polarity of the solvent. 
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EXPERIMENTAL METHODS 

Samples 

Solid samples of the covalently linked dimer of methyl pyrochlorophyllide a were 

generously provided to us by Dr. M. R. Wasielewski of Argonne National Laboratory. The 

solvents used for these experiments were purified by star,dard methods. Three solvents of 

widely differing polarity were used; 2-methyl tetrahydrofuran (MTHF), toluene and 

dimethylformamide (DMF). The MTHF was treated with lithium aluminum hydride, then 

distilled, and stored over molecular sieves. The toluene was distilled once, then stored over 

a drying agent (sodium/benzophenone), then vacuum distilled, and stored over molecular 

sieves in a nitrogen atmosphere. The DMF was treated with neutral alumina, then distilled, 

and stored over molecular sieves. Each solvent was freshly prepared before an experiment. 

To each solution ~1% pyridine (by volume, certifed ACS grade) was added to preclude 

aggregation of the dimers. It was of great importance to make each solution in a glove box 

in an inert, dry atmosphere and then seal the tube under several cm of N2^gy It was also 

very important to properly purify and dry each solvent because any water or renegade 

nucleophile that could engage in hydrogen bonding would lead to formation of aggregates 

of dimers. The utmost care was taken during all steps in sample preparations to eliminate 

any conditions that would promote aggregate formation. 

The dimer concentrations were typically 1x10"^ M based on an e(Qy) of 50,000 

[58]. As previously mentioned the solutions were sealed in glass tubes (3 mm i.d.) under 

4-5 cm of N2(g). The sealed tubes prevented water condensation from entering the tube 

when cycling in and out of the cryostat. 

Cryogenic Equipment 

As mentioned in the previous subsection the samples were in sealed glass tubes 

which were placed in an aluminum sample holder of local design which provided optical 
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access to the sample. The cooling rate of the samples varied upon the experiment being 

performed, however, the results at low temperature and intermediate temperatures were not 

cooling rate dependent. A model 8DT Janis liquid-helium cryostat (convection cooling) 

was used for the temperature dependent studies between 4.2 and 300 K. Temperature 

measurements were made with a Lakeshore Cryotronics DTC-500K calibrated silicon 

diode. Care was taken so that adequate equilibration time was given between temperatures 

where spectra were obtained. 

Experimental Appartus 

Figure 1 shows the configuration of the appartus used to obtain fluorescence line 

narrowed spectra and fluorescence excitation spectra. The laser system consists of an 

excimer laser (XeCl gas) (Lambda Physik EMG102) which is used to pump a dye laser 

(Lambda Physik FL2002). The dye laser provided tunable radiation in the 620-720 nm 

region using SR640 and OX720 laser dyes (Exciton). The laser linewidth was .2 cm'^ and 

its pulse width was 10 ns. In some cases a CW HcWe laser (Melles Groit), linewidth .03 

cm~^, was used as an excitation source. 

The output of the dye laser was steered to impinge on the sample in the cryostat via 

two quartz turning prisms. The shape of the laser beam was also changed by the lenses 

placed before the cryostat so that the entire sample volume was excited. The fluorescence 

was collected at 90° with respect to the excitation to reduce interference due to laser 

scatter. The two lenses placed between the cryostat and the monochromator served to 

collect and collimate the fluorescence into the monochromator. These lenses were chosen 

so that they would collect as much of the fluorescence as possible and introduce that into 

the monochromator while matching the F number of the monochromator. This last step 

provided the most resolution with the highest level of S/N (signal to noise) from the 

monochromator. 
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Figure 1, Block diagram of the fluorescence experimental set-up showing excimer laser 

(Exc. L), dye laser (Dye L.), cryostat (C), sample (S), photodiode (PD), 

photodiode array (PDA), optical multichannel analyzer (OMA), 

monochromator (M), and plotter (P). A photomultiplier tube was also used in 

place of the OMA as a detector. See text for details. 
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A 1 meter monochromator was used to disperse the fluorescence. Two 

monochromators were used during the course of the experiments, 1 m Mcpherson 2061 

(R=160,000) or a 1 m Jarrel-Ash (R=60,000). 

For CW excitation, a PMT and picoammeter were used for signal processing, while 

for pulsed excitation, either a Tracor Northern TN-6134 intensified diode array and TN-

6500 OMA or PMT plus EG&G Model 162 boxcar averager (with two model 164 

processer modules) was employed. The PMT used (RCA C31034 or EMI 9558-B) was 

cooled. For spectra obtained with the pulsed laser, normalization (via a photodiode) was 

performed to minimize the effect of pulse intensity jitter. 

The spectra were either plotted out in real time on a chart recorder (Houston 

Instruments) or stored on computer diskette for latter retrival. For the fluorescence line 

narrowed spectra the laser remained at one wavelength and the monochromator was 

scanned to obtain a spectra. In the case of the fluorescence excitation spectra the 

monochromator remained at one wavelength and the dye laser was scanned (via a Lambda 

Physik FL512 scan controller) to obtain a spectra. The laser intensity was adjusted using 

neutral density filters and cut-off filters (Schott Glass Co.) were used in front of the 

monochromator to discriminate against laser scatter. 
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PAPER I. TEMPERATURE AND SOLVENT-POLARITY DEPENDENCE OF THE 

ABSORPTION AND FLUORESCENCE SPECTRA OF A FIXED-DISTANCE 

SYMMETRIC CHLOROPHYLL DIMER 
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ABSTRACT 

Temperature dependent absorption and fluorescence spectra and line narrowed 

fluorescence and excitation spectra are reported for a dimer consisting of two methyl 

pyrochlorophyllide a molecules which share a vinyl group at the 2-position of each 

macrocycle. The data (obtained for three solvents of widely differing polarity) show that 

the dimer exists in two conformations (A and B) and that excited state relaxation from A to 

B onsets near the glass transition temperature (Tg). Molecular modeling suggests that the 

two conformations are related by "bicycling" of the two single bonds joined to the vinyl 

group linkage. At sufficiently low temperature the solvent dynamics are rate limiting for 

the conformational relaxation. For a solvent of sufficiently high polarity (DMF), the 

excited state of B is shown to access a new radiationless decay channel for T^Tg. A 

charge transfer state is suggested to be important for this decay. The model presented is 

shown to provide a qualitative explanation for the frequency domain and recently obtained 

picosecond and fluorescence quantum yield room temperature data (D. G. Johnson, W. A. 

Svec and M. R. Wasielewski, Israel J. Chem., in press). 
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INTRODUCTION 

Interest in the primary charge separation process and the excited electronic state 

structure of photosynthetic reaction centers (RC) has, for many years, stimulated studies of 

model dimeric and oligomeric chlorophyllic systems. In the case of bacterial RC the 

importance of a special bacteriochlorophyll (BChl) pair for the initial phase of charge 

separation was established prior to the structure determinations [1-3] fat Rps. viridis and 

Rb. sphaeroides. The diversity of model systems constructed by covalent linkage, 

nucleophilic linkage, and self-aggregation is impressive and their study has provided 

valuable insights on singlet and triplet excitation and charge delocalization [4-6]. In what 

follows we mention only a few of the model systems studied. 

Fong proposed [7] a dimer of Chi a • H2O as a model for the primary electron 

donor (FED) of photosystem I (P700) whose assembly is dependent on solvent conditions. 

Shipman et al. [8] presented a similar model for P700 involving dimers formed by 

nucleophilic linkage of Chi a monomers. Nucleophiles employed were ROH, RSH or 

RNH2, where R is an alkyl chain. A model for the FED state of Rb. sphaeroides, F870, 

suggested by Wasielewski et al. [9] is a pair of bacteriochlorophyllide a molecules 

covalently bound by an ethylene glycol diester bridge. A similar model for F700 was also 

constructed by Wasielewski et al. [10] in which two Chi a were linked by the same bridge. 

Boxer and Closs [11] presented a P700 model which is the ethylene glycol diester of 

methyl pyrochlorophyllide a. Fellin and Wasielewski [12] have synthesized a F700-

electron acceptor model system consisting of an ethylene glycol diester of pyrochlorophyll 

a and two molecules of pyropheophorbide a ethylene glycol monoester. The 

pyropheophorbide a molecules acted as electron acceptors for the dimer. Yuen et al. [13] 

have constructed a model for a F700-antenna system using a tris (pyrochlorophyllide a) 

ethane triester. Two of the molecules folded upon one another when the solvent conditions 

were sufficient with the third molecule acting as an antenna. Wasielewski [5] proposed a 

model for F700 consisting of a bis(chlorophyll d) cyclophane. Bucks et al. [14] have 

investigated several dimers of chlorophyllic species (pyropheophorbide a, pyropheophytin 
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a) and (rimers as models for primary electron donors and primary electron donor-antenna 

systems. Agostiano et al. [15] have proposed a model for P680 involving a dimer of Chi 

a • 2H2O. 

Speculation concerning the geometry of the special pair in the RC of Rps. viridis 

and Rb. sphaeroides ended with the structure determination of the former by Deisenhofer 

et al. [1] and of the latter by Chang et al. [3] and Allen et al. [2], The two BChl molecules 

have an edge-to-edge conformation with n-n overlap of the two macrocycles restricted to 

ring I and an angle between the two planes of about 15°. The Qy-transition dipoles of the 

monomer are out-of-phase (anti-parallel) and from the geometry it is clear that the lowest 

energy mini-exciton state (denoted as P.) is allowed and is anti-symmetric with respect to 

the C2-symmetry axis. From the structures the importance of protein-pigment interactions 

for the special pair geometry is apparent. 

With the above structural features in mind, Johnson et al. [16] synthesized the 

Hxed-distance symmetric bis-pyrochlorophyllide a dimer shown in Fig. 1. The molecule 

has approximate C2 symmetry and the double bond serves to hold the two macrocycles at a 

constant edge-to-edge distance of approximately 3.9 A. The Mg...Mg distance is about 12 

A. The ^H-NMR data (nuclear Overhauser effect) indicates the structure show, in Fig. 1 

has a dihedral angle between the olefinic linkage and the macrocycles of 49-53°. The 

possibility that this structure is an average for two (or more) rapidly interconverting (at 

room T) conformers could not be excluded. The room T absorption and fluorescence 

spectra of the dimer reported [16] are interesting in that the lowest energy Qy-absorption 

and fluorescence maxima depend only weakly on solvent polarity while the fluorescence 

lifetime and fluorescence quantum yield exhibit a two order of magnitude decrease as the 

solvent dielectric constant is increased froni 2.4 (toluene) to 36.7 (DMF). The absorption 

and fluorescence maxima occur at ~690 and 720 nm at room T. Attempts to observe new 

emission which accompanies the diminuation of the 720 nm fluorescence intensity were 

unsuccessful. Johnson et al. [16] also demonstrated, based on stimulated emission studies 

(610 nm pumping), that the 720 nm emission exhibits a rise time which decreases from 18 

psec for toluene to :S1.5 psec for DMF. No prompt stimulated emission signal was 
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observed. In the absence of firm evidence to the contrary, Johnson et ai. [16] assumed that 

the dimer exists in only one ground state conformation for consideration of dynamical 

models for interpretation of the time domain and fluorescence quantum yield data. Each 

model presented certain difficulties as will be briefly discussed later. 

With this in mind we recently performed T-dependent absorption, fluorescence 

excitation and frequency domain fluorescence studies of the pyrochlorophyllide a dimer in 

order to further explore the nature of the absorbing and emitting species and their electronic 

states and how they depend on solvent polarity. These studies included fluorescence line 

narrowing measurements. The new data establish that the dimer exists iu iwo 

conformations for both the ground and excited electronic states. The T-dependences of the 

absorption and fluorescence spectra establish that interconversion from the higher energy 

absorbing conformer to the lower energy conformer onsets in the excited state near the 

glass transition temperature (Tg) for all solvents utilized. The T-dependence of the 720 nm 

fluorescence intensity in different solvents provides an obvious connection with the time 

domain data of Johnson et al. [16]. This fluorescence is assigned to the lower energy 

absorbing conformer. A particular intra-dimer coordinate for conformer interconversion is 

suggested on the basis of molecular modeling. A two-conformer excited state model 

embellished with a charge-transfer (CT) state is shown to provide a consistent, albeit 

qualitative, interpretation of the time and frequency domain data. The CT state provides 

for decay of the 720 nm emitting state only in solvents of sufficiently high polarity and for 

T^Tg. The possibility that the CT state is a TICT (twisted intramolecular charge-transfer) 

state is considered. 
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Figure I. The methyl pyrochlorophylhde <7 dimer 
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EXPERIMENTAL 

The covalently linked dimer of methyl pyrochlorophyllide a was prepared and 

purified using the procedure of Johnson et al. [16]. The solvents used for the experiments 

were purified by standard methods. The 2-methyl tetrahydrofuran (MTHF) was treated 

with lithium aluminum hydride and then distilled and stored over molecular sieve (3A or 

4A). The toluene was distilled once and stored over sodium/benzophenone (a drying 

agent) and then vacuum distilled and stored over molecular sieve under nitrogen. The 

dimethyl formamide (DMF) was treated with neutral alumina then distilled and stored over 

molecular sieve. Each solvent was freshly prepared before being used. To each solution 

~1% pyridine (by volume) was added (certified ACS grade) to preclude aggregation of the 

dimer. Dimer concentrations used were -1 x 10"^ M based on an e = 50,000 for the Qy 

absorption band. The samples were sealed in glass tubes of ~3 mm I.D. under 4-5 cm of 

N2(g) to prevent contamination due to water. Absorption spectra were obtained with a 

Bruker IPS 120 HR Fourier-transform infrared (visible) spectrometer. The resolution was 

4 cm~^ and each absorption spectrum presented is the average of 50 scans. 

Fluorescence spectra were obtained using conventional set-ups in which either an 

excimer-pumped dye laser or CW He-Ne laser was used as an excitation source. The 

former. Lambda Physik FL2002 dye laser pumped by a Lambda Physik EMG102 excimer, 

was also utilized for fluorescence excitation measurements. Fluorescence was dispersed by 

either 1 m McPherson 2061 (R = 160,000) or 1 m Jarrel-Ash (R = 60,000) monochromator. 

For CW excitation, a PMT and picoammeter were used for signal processing while for 

pulsed excitation, either a Tracor Northern TN-6134 intensified diode array and TN-6500 

OMA or PMT plus EG & G model 162 boxcar averager (with two model 164 processor 

modules) were employed. The PMT (RCA 31034C or EMI 9558-B) was cooled. Spectra 

obtained with the pulsed laser were normalized for pulse intensity jitter. 

A model 8DT Janis liquid helium cryostat (convection cooling) was used for T-

dependent studies between 4.2 and 300 K. Temperature measurements were made using a 

Lakeshore Cryotronics DTC-500 K calibrated silicon diode. 
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RESULTS 

The dimer absorption exhibits a marked dependence on the temperature (T). At 

room T the absorption appears as a single band near 690 nm while at low T it appears as a 

doublet with components near 685 and 70S nm. The band positions exhibit a slight 

dependence on solvent, Table 1. Temperature dependent spectra are shown in Fig. 2 for 

toluene. The spectra obtained for T < 160 K are essentially identical to the 160 K spectrum 

in Fig. 2. The spectra in Fig. 2 are off-set for inspection but their integrated intensities can 

be directly compared. In so doing it is found that the integrated absorption intensity is 

independent of T. The absorption band for the methyl pyrochlorophyllide a monomer is 

independent of solvent polarity and located at 660 nm [16]. Thus the dimer bands are 

significantly red shifted (^5 nm) relative to that of the monomer. In what follows the two 

dimer components observed in absorption at low T will be referred to as the 685 and 705 

nm bands. 

The T-dependence of the dimer fluorescence excited at 632.8 nm (He-Ne laser) has 

also been determined for three solvents (toluene, MTHF, DMF). The excitation provides a 

vibrational excess energy for the 685 and 705 nm absorption components of -1200 and 

-1600 cm'^. The excitation energy is too low to provide signifîcant population of the 

dimer states at -585 nm [16]. Spectra for MTHF and DMF are shown in Figs. 3 and 4, 

respectively. The intensity distributions of the spectra within a given fîgure can be directly 

compared. The T-dependence of the dimer fluorescence in toluene is similar to that in 

MTHF. For all three solvents two fluorescence bands at -685 and -720 nm are readily 

observed for TiSTf (freezing point of the solvent). Only the 720 nm fluorescence band is 

observed for T > Tf. Thermal cycling experiments showed that the T-dependence 

exhibited in Figs. 3 and 4 is reversible. 

The narrow line structure seen superimposed on the 685 nm fluorescence band in 

the lowest T spectra of Figs. 3 and 4 is a consequence of fluorescence line narrowing 

(FLN) [17]. It is firmly established that narrow line laser excitation into a vibronically 

congested region of the lowest excited singlet state (Sj) can produce vibrationally relaxed 
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Figure 2. Temperature dependence of the dimer absorption in toluene. Spectra are off-set 

for clarity but integrated intensities may be directly compared. Spectra for T < 

160 K do not exhibit further change 
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Table I. Absorption and Fluorescence Maxima 

Solvent (e) Tg, (K)^ Abs. Max. (nm)^ Fl. Max (nmf Fl. FWHM (cm"^)^ 

toluene (2.4) 117,178 685,705 690,722 400,650(3.5:1) 

MTHF (7.0) 95,136 684,702 690,720 440,550 (2.5:1) 

DMF (36.7) 129,212 680,695 685,725 360,560(5:1) 

^Tg and T^ are the glass and melting transition temperatures. 

^Absorption maxima in the low T limit. At room T the single absorption maximum in toluene, MTHF and DMF occurs at 

686,684, and 683 nm, respectively. 

^Fluorescence maxima in the low T limit. 

^Full-width-half-maximum for the 685, 720 fluorescence bands. The ratio in brackets is the 720:685 integrated 

fluorescence intensif ratio obtained with = 632.8 nm at low T. 
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and line narrowed fluorescence bands in the region of the SQ=>S2 absorption origin (685 

nm region for the case at hand). The displacements of the line narrowed bands from the 

excitation frequency provide the excited state vibrational frequencies. Vibronically excited 

FLN spectroscopy has been applied to a variety of biomolecules including photosynthetic 

pigments [18-20] and DNA-carcinogen adducts [21]. Figure 5 showS the FLN spectrum 

obtained with = 632.8 nm. Several of the bands are labeled with their associated 

excited state vibrational frequency (in cm~^). As expected, the most intense features in 

Fig. 5 are located in the vicinity of 1200 cm"^ since this is the excess vibrational energy 

produced in the 685 nm state with = 632.8 nm, vide supra. FLN spectra (not shown) 

obtained with several other Xgjj-values have been obtained and provide, together with Fig. 

5, a rather complete picture of the fundamental vibrations for the 685 nm state. These 

frequencies are in good agreement with those obtained from line narrowed fluorescence 

excitation spectra. An example of such a spectrum is shown in Fig. 6 for fluorescence 

detection at 685.0 nm with a 2 cm~^ band pass, cf. Section n. Several of the zero-phonon 

excitation bands are labeled with a cm~^ value corresponding to the excited state 

vibrational frequency. Table n (fîrst column) lists the frequencies and relative intensities 

of the modes belonging to the 685 nm dimer state provided by the FLN and line narrowed 

fluorescence excitation spectra. Also presented in Table II are excited state vibrational 

frequencies for Chi a in diethyl ether glass @ 5 K (third column) [18] and ground state 

vibrational frequencies for oligomers of pyrochlorophyll o @ 35 K (second column) [22]. 

Reasonable agreement exists between the vibrational frequencies and relative intensities for 

the dimer with those from these references. The FLN and line narrowed excitation spectra 

establish that the 685 nm fluorescence originates from the 685 nm absorbing dimer state. 

The small Stokes shift observed for the 685 nm state is consistent with small Franck-

Condon factors for both the intramolecular and phonon modes. In addition, these spectra 

establish that the width of the 685 nm absorption band at low T is dominated by site 

inhomogeneous line broadening. This has also been confirmed by the nonphotochemical 

hole burned spectra for the 685 nm band (spectra not shown). 
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In contrast with the 685 nm emission, FLN for the 720 nm emission was not 

observed even with \g^-values signiHcantiy higher than 632.8 nm. The fluorescence 

observed appeared as it does with = 632,8 nm, cf. Figs. 3 and 4. In order to determine 

whether the 720 nm fluorescence is connected with the 70S nm absorption band, 

fluorescence excitation spectra were obtained as a function of temperature for a detection 

wavelength of 730 nm (band pass = 30 cm"^). Figure 7 shows the dependence of the 

fluorescence excitation band maximum on temperature for toluene. Also shown in this 

figure is the dependence of the 720 nm fluorescence band position on temperature. For 

both sets of data a significant band shift occurs near ,180 K, which is close to the freezing 

point of toluene (T^ = 178 K [23]). From Fig. 7 it can be seen that the low and high T 

values for the fluorescence excitation band maximum are -706 and 694 nm. This -12 nm 

shift is the same as that observed for the 720 nm fluorescence band within experimental 

uncertainty. This together with the similarity between the two solid curves in Fig. 7 

indicate that the 720 nm fluorescence originates from the 70S imi absorbing dimer state. 

Thus, this state is characterized by a Stokes shift of-15 nm (-300 cm"^), far larger than the 

Stokes shift for the 685 nm dimer state. These two dimer states are further contrasted by 

the facts that the maximum of the 685 nm band is only weakly dependent on the 

temperature and does not undergo an abrupt change at T~Tf. 
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Table II. Vibrational modes for the 685 nm dimer state 

Excited State Ground State Excited State 
frequency (cm*^)® frequency (cm"^)^ frequency (cm'^)^ 

298-W 307 
313-VW 317 
345-VS 348-8 
364-M 358 
376-M 
384-M 390 390-W-Bk-
563-W 
570-8 572 570-W 
595-M 603 600-VW 
617-VW 
688-W 688-VW 
711-W 703 
728-VW 733 
755-S 753 748-S 
773-W 765-VW 
804-M 803 
842-M 851 
868-M 
888-M 890-VW 
903-S 910-VW 
918-VS 918 925-W 
931-S 
953-VW 

^Excited state vibrational frequencies this work. Relative intensities: S = Strong, M 

= Medium, V = Very, Br = Broad, sh= shoulder. 

^rom resonance Raman of pyrochlorophyll a oligomers. See ref. [24]. 

^Excited state vibrational frequencies of Chi a monomers. See ref. [20]. 
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Table II. Continued 

Excited State Ground State Excited State 
frequency (cm"^)® frequency (cm"^)^ frequency (cm'b*^ 

990-VS 985 984-VS 
1002-M 1005-VW 
1011-W 
1025-M 1030-VW 
1056-S 1046 
1083-M 1075-W-Br 
1098-W 
1121-M 1115 1110-W 
1148-S 1147 1135-W 
1169-M 1162 1168-W 
1181-S 1188 
1195-W 1195-VW 
1244-8 1243-sh 
1249-S 1250-VS 
1270-S 1266 1275-VW 
1288-S 1290 
1317-S 1312 1325-VW 
1383-M 1380 1372-W 
1402-M 1392 1395-VW 
1565-W 1560 
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Figure 3. Temperature dependence of the dimer fluorescence in MTHF. = 632.8 nm, 

10 cm"! resolution. Integrated intensities for different temperatures may be 

directly compared 
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Figure 4. Temperature dependence of the dimer fluorescence in DMF. A = 5 K, B = 

91 K, C = 140 K, D = 176 K, E = 201 K and F = 270 K. See Fig. 3 caption 
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DISCUSSION 

Temperature-dependent Absorption and Fluorescence 

Spectra 

The results of the preceding section establish that the (685, 70S) nm absorption 

bands are due to the two electronic states responsible for the (685,720) nm fluorescence 

bands. The possibility that one of the two absorption bands is due to an impurity 

(monomer or dimer) can be ruled out since the HPLC and ^ H-NMR analyses of the 

extensively purified dimer yield a limit for an impurity concentration that is no greater than 

5% [16]. Deconvolution [24] of the low T absorption spectrum in Fig. 2 yields a 685:705 

integrated intensity ratio of about unity. This is inconsistent with either of the two 

components being due to an impurity (at a level of < 5%) since the measured molar 

extinction coefficient is consistent with a Qy transition (-50,000 at room T). Furthermore, 

the T-dependent fluorescence data for toluene and MTHF show that the loss of 685 nm 

fluorescence intensity for T2:Tf is compensated by a gain in the 720 nm fluorescence 

intensity, vide infra. This is not consistent with the behavior of an isolated impurity. The 

T-dependent fluorescence behavior also argues against the 705 nm absorption band being 

due to an aggregate(s) of the dimer (analogous to aggregates of Chi monomers [25,26]). 

Furthermore, the solvent purification procedure and the addition of ~1% pyridine (an 

excellent ligand for Mg) should preclude aggregate formation especially since dilute 

solutions (~10"^ M) were used in the experiments. Typically, aggregation requires much 

higher concentrations, on the order of 10"^-10"^ M [25-27]. 

We proceed now to consider the possibility that a single dimer conformation (e.g., 

as in Fig. 1) can account for the T-dependent absorption and fluorescence data. To do so 

requires a consideration of the exciton model for the dimer whose constituent monomers 

possess Qy-transition moments which are anti-parallel (180° out-of-phase). We denote the 

two dimer states by (+ and - indicating symmetric and antisymmetric with respect to the 

dimer symmetry axis) and the Davydov splitting by 2 V. In the absence of symmetry 



www.manaraa.com

50 

breaking (e.g., due to the solvent), only the P. state carries oscillator strength and, 

furthermore, it is this state that lies lower in energy since V > 0 [28]. Clearly, the presence 

of two absorption bands cannot be reconciled with this model. Consider next that solvent-

induced symmetry breaking scrambles and P. to an extent that endows them with 

comparable oscillator strengths or that the conformation of the dimerls not that shown in 

Fig. 1. This single conformation would be one for which the monomer transition dipoles 

are not anti-parallel (or parallel) so that both P^ and P. carry oscillator strength [29]. 

There are several difHculties with both of these possibilities. First, it is well documented 

for organic crystals that [30-32] relaxation from an upper exciton (Davydov) level to a 

lower energy exciton level occurs on a picosecond or subpicosecond time scale even at 

very low T. Very recently, a decay time of 260 fsec at 1.6 K has been measured for an 

upper exciton level of the 7-bacteriochlorophyll a containing protein subunit of the light 

harvesting complex from Prosthecochloris aestuarii [33]. The theory for such relaxation 

has been extensively developed [34-37] and shows that the relaxation is induced by low 

frequency intermolecular aggregate modes which modulate the resonance energy transfer 

integrals. In the absence of these modesw or perturbing solvent modes, such relaxtaion is 

forbidden [38]. There is no precedent for the suggestion that the observation of the 685 nm 

fluorescence at low T is due to very slow (~nsec) decay of the 685 nm exciton level to the 

705 nm level. Second, the observation that the 685 nm level abruptly begins to decay at 

T~Tf is difficult to reconcile in terms of existing theories for inter-exciton level relaxation. 

Third, if the 685 and 705 nm absorption bands are exciton components of a single dimer 

configuration, then it is necessary to explain why the 705 and 685 nm levels shift and do 

not shift (respectively) appreciably with temperature. That is, the Davydov splitting is T-

dependent but the energy of the upper component is T-independent. This could occur if the 

expected shift for the upper component was cancelled by the T-dependence of the 

dispersion energy. However, this possibility is viewed as extremely remote. 

Thus, we conclude that the T-dependent fluorescence and absorption data cannot 

be understood in terms of a single conformation of the dimer shown in Fig. 1. 

Consequently, a model in which two stable conformations (A and B) of the dimer exist is 
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explored next. The 685 and 705 nm absorption bands will be considered to be the Qy-

origin bands of A and B. Possible conformer structures will be considered later, section 

IV. B. Hypothetical potential energy curves for the ground and excited states of the dimer 

are given in Fig. 8 (solid curves). The potential well minima for conformer B are shifted 

relative to each other because of the Stokes shift associated with the 705 nm state. For 

each of the solvents used the integrated absorption intensity remains constant as the 

temperature increases from the low T limit (where the 685 and 705 nm components are 

resolved) to room T (where only a single absorption band is apparent). The spectra for all 

solvents, e.g.. Fig. 2, show that as T increases past ~Tf, the 705 nm band blue shifts until it 

merges with the 685 nm band. The data in Fig. 7 for toluene indicate that at room T the 

705 nm band has shifted to ~694 nm. Within our experimental uncertainty, the 685 nm 

band does not appear to shift with temperature. It was argued above that the 705 nm state 

or conformer B emits at 720 nm. Furthermore, the 720 nm fluorescence band is present at 

all temperatures. All three factors indicate that both A and B are stable conformers at room 

T. The low temperature absolution spectra then establish that conformers A and B have 

comparable concentrations (making the reasonable assumption that their oscillator 

strengths are similar). Deconvolution of the low T absorption profîles in terms of two 

Gaussians showed that 685 and 705 nm absorption bands are equal in intensity (± 30%) for 

toluene, MTHF and DMF. However, the fluorescence spectra obtained with = 632.8 

nm show that the 720 nm fluorescence is 3-5 times more intense than the 685 nm 

fluorescence at low T, Table I. This excitation wavelength should excite A and B with 

nearly equal probability. Fig. 2. Obvious (but unsubstantiated) arguments involving 

differences in oscillator strengths and radiationless decay constants for A and B could be 

presented to explain the greater fluorescence intensity from B. 

We consider now the T-dependence of the 685 nm fluorescence band. For all 

solvents the intensity was constant from T~5 K to Tg, where Tg is the glass transition 

temperature. Table I. As the temperature was increased above Tg, the fluorescence 

intensity rapidly diminished. By T~Tf (Table I), the 685 nm fluorescence was not 

detectable. As discussed earlier, the diminution of this fluorescence for toluene and MTHF 
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is compensated by a gain in the intensity of the 720 nm emission. Thus, it appears that 

large amplitude solvent motion is required for relaxation from the 685 nm state of A to the 

705 nm state of B. If one assumes that for T^Tg the two conformers in their excited state 

are in thermal equilibrium, the T-dependence of the 685 nm fluorescence intensity leads to 

A' = 360 and 475 cm'^ for MTHF and DMF, respectively, cf. Fig. 8. Considering for the 

moment that in Fig. 8 A = 0 and noting that the 685 and 705 nm absorption bands are 

separated by ~ 400 cm"^, it follows that A' = (400 + 1/2 Stokes shift) for the case where 

co'-co. Fig, 8. The Stokes shift is ~300 cm"^. Table I, so that a calculated value for A' is 

550 cm"^. Improved agreement with the experimental values for MTHF and DMF can be 

achieved by allowing for A < 0 and/or to' < (o. Indirect evidence for to* < co is that the low 

T FWHM of the 705 nm absorption band (from deconvolution) is about 100 cm"^ narrower 

than (he FWHM of the 720 nm fluorescence band in all solvents used. 

To conclude this section we consider the T-dependent fluorescence spectra for 

DMF shown in Fig. 4. Although the behavior for the 685 nm fluorescence band is similar 

to those for toluene and MTHF, the T-dependence of the 720 nm band is distinctly 

different. That is, the latter band undergoes a significant decrease in intensity as T is 

increased above -120 K (Tg = 129 K). By room T its intensity decreased by about a factor 

of ten. This interesting behavior is best discussed in the context of the recent time domain 

studies, section IV. C. 

Possible Dimer Conformations 

The data presented above indicate that relaxation from conformer A to B occurs 

with a rate competitive with fluorescence as T approaches Tg. At T~Tf, the relaxation rate 

has significanlly increased to the point where fluorescence from A is no longer observable. 

Detailed considerations of the dimer structure. Fig. 1, indicate that the most plausible intra-

dimer vibrational coordinate for conformational relaxation is "bicycling" by the two single 

bonds joined to the vinyl group linkage. The dihedral angle between the olefinic linkage 

and the macrocycles shown in Fig. 1 is ~50°. A computer molecular model program 
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(BIOGRAF) was used to gauge the steric limitations imposed by the a-, vinyl and 1-

methyl protons on bicycling. The 12-C and 2-C and ethylenic carbons were used to define 

the dihedral angle discussed throughout this paper (the chlorophyll carbons being 

numbered in the standard maimer [4]). It was found that dihedral angles between ~S0° and 

-140° satisfied the van der Waal's requirements for the above protons with the macrocyclic 

planes in a parallel configuration. It is important to note that n-electron delocalization 

between the two macrocycles via the vinyl group would be minimized for the 90° position 

and that this configuration could lead to formation of a TICT state (twisted intramolecular 

charge transfer state). We return to this point in section IV. C but note now that such a 

state could be expected to experience a signiHcant stabilization in a high polarity solvent 

such as DMF. 

Calculations of the potential energy minima along the bicycling coordinate would 

require consideration of atom-atom interactions and the 7t-electron stabilization energy 

associated with partial conjugation across the bridge between the two macrocycles (for 

both the ground and excited electronic states). In the absence of such calculations it is, 

nevertheless, clear that more than one thermally accessible conformation is entirely 

plausible, consistent with the conclusion of the preceding section that the dimer exists in 

two confonnations (A and B) in all solvents utilized. The correlation between the onset of 

relaxation of conformer A with the glass transition temperature, Tg, is convincing evidence 

for the importance of large amplitude solvent motion for conHgurational change in the 

dimer. However, the excited state energies of A and B (685 and 70S nm states) and the 

Stokes shift for B are not very sensitive to solvent polarity. Table I. But, again, solvent 

polarity has a profound effect on the radiationless decay of the 70S nm state at higher 

temperatures. 

Radiationless Decay of the 70S nm State of Conformer B 

The data presented here establish that for a solvent of sufficiently high polarity 

such as DMF (e = 37), an efficient radiationless decay channel for the 705 nm state of 
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conformer B (emission at 720 nm) is accessed. This observation provides a connection 

with the picosecond transient absorption, fluorescence quantum yield and stimulated 

emission studies of Johnson et al. [16] (referred to hereafter as JSW), which were 

performed at room T with a series of solvents of different polarity. At room T JSW were 

only able to monitor the 720 nm emission band. They observed a two order of magnitude 

decrease in fluorescence quantum yield from toluene (e = 2, (j>f| = 0.18) to DMF (e = 37, 

= 0.002), Xgjj = 425.0 nm. A stimulated emission feature was observed in the transient 

absorption spectra which coincides with the 720 nm fluorescence maximum. Excitation 

was at 610 nm (an important fact for what follows). The stimulated emission observed by 

JSW exhibited a rise time (tg) which was solvent dependent, varying from ^1.5 psec for 

DMF to 18 psec for toluene (the least polar solvent used). 

In what follows, the two conformer model for the dimer suggested in this paper is 

shown to provide a qualitative explanation for the data of JSW when relaxation of the 70S 

nm state into a charge-transfer (CT) state is invoked. Such a state was discussed by JSW. 

However, in view of the data presented here, this model was realized to present certain 

difficulties. For example, the rise time (Tg) was assumed to arise from the decay of the 

upper exciton level of the dimer shown in Fig. 1 to the dipole allowed lower exciton level 

(P.). The former (P^) is dipole forbidden, in the absence of solvent perturbations, and it 

was difficult to understand why excitation at 610 nm should preferentially excite P^ rather 

than P^. Excitation of the latter would lead to prompt stimulated emission (excitation at 

610 nm is lower than the onset of absorption due to transitions). No prompt stimulated 

emission was detected [16]. 

Within the two conformer (685,705 nm) model, the Tg data can be understood as 

follows. The = 610 nm utilized by JSW provides ~1600 cm"^ vibrational excitation for 

conformer A absorbing at -685 nm. Table I. From the point of view of maximal vibronic 

Franck-Condon factors, this is an optimal region for chlorophyllic species [18,39]. On the 

otherhand, an additional -250 cm"' of vibrational energy is provided for the excited state 

of B which should lead to a decrease in the Franck-Condon factor by about a factor of 10 

[39]. Thus, = 610 nm preferentially excites conformer A by an amount governed by 
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this factor. Therefore, it may be concluded that the stimulated emission rise time is a direct 

measure of the rate of relaxation from conformer A to B at room T. 

To account for the marked dependence of the 720 nm fluorescence lifetime on 

solvent polarity, we follow JSW and suggest that solvents with sufficiently high polarity 

stabilize a CT state to an extent which places it sufficiently close to the 70S nm state to 

allow for its decay. Such a CT state is schematically shown in Fig. 8 as the dashed 

potential energy curve. We hasten to add that the CT state needn't lie lower in energy than 

the 70S nm state of B for efficient relaxation of the latter into the former, as recently 

discussed by Won and Friesner [40] in connection with charge separation in photosynthetic 

reaction centers. On the otherhand the CT state can't lie too far above 70S nm, as is 

apparently the case for nonpolar solvents such as toluene. A quantitative discussion of this 

point requires knowledge of the exchange interaction between the 705 nm state (which may 

be assumed to be excitonic) and the CT state as well as the relevant electron-vibration 

coupling strengths of the two states [38]. These are not known. However, the weak 

dependence of the Stokes shift of the 70S nm state on solvent polarity establishes that this 

shift is primarily a consequence of configurational displacement within the dimer, as 

suggested by Fig. 8. The good correlation between the fluorescence quantum yield and 

lifetime data presented by JSW establishes that the 685 nm state does not decay directly 

into the CT state but indirectly via the 70S nm state. On the basis of the electrochemical 

data presented by JSW, one can roughly estimate that the hypothetical CT state would lie 

about 1000 cm"^ above the 705 nm state. JSW were not able to observe fluorescence from 

the proposed CT state. This suggests that this state is dark or that it emits in the ir (> 900 

nm). 

A possible candidate for the CT slate is a TICT state of the type mentioned in 

Section IV. B. and associated with the 90° dihedral angle. Very often TICT states are 

observed to exhibit fluorescence whose maximum depends sensitively on solvent polarity, 

viscosity and temperature [41,42]. However, there are several examples of compounds for 

which convincing evidence for a nonemissive TICT state has been presented [43-45]. 
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In summary, we have established that relaxation from the 685 nm dimer state of 

conformer A to the corresponding state of B at 70S nm onsets at T~Tg in solvents of 

widely differing polarity. Thus, large amplitude solvent motion is required for relaxation 

from A to B to occur on the nsec to picosecond time scale. At the same time the energies 

of the above two states do not depend strongly on solvent polarity. Molecular modeling 

suggests that the two conformations of the dimer are related by motion along the bicycling 

coordinate discussed in section IV. B. It is further demonstrated that a radiationless decay 

channel for B's 705 nm state opens at T-Tg, but only in solvents of sufficiently high 

polarity, e.g., DMF. The fact that this channel in DMF is closed at T^g indicates that 

solvent motion is required for the formation of a new excited state dimer conHguration, 

which acts as a precursor for decay into a CT state. If the CT state is a TICT state, this new 

configuration would be one for which the dihedral angle is ~90° (see Section rVB). For 

this model, the dihedral angle for B would be intermediate in value between 90° and 50° 

since direct decay from the 685 nm state of A (dihedral angle ~50°) into the CT state 

(dihedral angle -90°) does not occur. Decay occurs from conformer A to the CT state only 

through the 705 nm state of B. 
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Figure 8. Hypothetical potential energy curves for two conformers of the dimer 
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CONCLUDING REMARKS 

The T-dependent data presented here establish that the methyl pyrochlorophyllide 

a dimer exists in two conformations, A and B. It is suggested that the picosecond 

stimulated emission (720 nm) rise time (tg) data [16] reflect excited State relaxation from 

conformer A to B at room temperature. To better understand the dependence of this 

relaxation on solvent (tg= 18 psec for toluene, ^1.5 psec for DMF) will require the 

measurement of tg as a function of temperature for different pumping wavelengths. The 

solvent dependence observed at room T might reflect solvent dynamics or the fact that the 

barrier height in the excited state. Fig. 8, is determined, in part, by solvent-dimer 

interactions. The observation that the relaxation onsets (becomes competitive with 

fluorescence) for T~Tg proves that solvent dynamics can be expected to be rate limiting at 

lower temperatures in the range TgST^300 K. This needn't be the case at room 

temperature. 

In addition to the excited Qy states of A and B, a third excited state (CT) has been 

implicated as a decay channel for the Qy (70S nm) state of B in solvents of sufficiently 

high polarity. The observation that this channel opens (is competitive with fluorescence) 

for T~Tg suggests that large amplitude solvent motion is the first step of the relaxation 

dynamics. It will be important in future studies to measure the T-dependence of the 705 

nm state emission (at 720 nm) lifetime in high polarity solvents. Although the association 

of the third excited state with a CT state (a TICT state was considered) is reasonable, it is 

not proven. It is conceivable, for example, that radiationless decay (SQ=>S}) from the 

excited state conformation of B achieved by solvent motion (TkTg) would be polarity-

dependent. 

The reason why the Stokes shift (linear electron-phonon coupling) is moderately 

large for conformer B (but small for A) is not clear. The absence of fluorescence line 

narrowing for B's 720 nm emission is consistent with strong electron-phonon coupling. 

The Stokes shift, given approximately by 2So) where co is a mean phonon frequency, is 

about 300 cm'^ in all solvents measured. If we take (û~30-50 cm"\ then S~5-3. Since the 



www.manaraa.com

59 

Franck-Condon factor for the zero-phonon transition is exp(-S), S-values in this range 

would render this transition quite highly Franck-Condon forbidden. In future studies it will 

be important to perform nonphotochemical hole burning [46] on the 70S nm absorption 

band (and the 685 nm band for comparison) in different glassy solvents in order to 

determine co and whether this effective mode frequency is associated with an intra-dimer 

(e.g., bicycling) or a solvent coordinate. 

Finally, we comment that while there are some similarities between the 

spectroscopic, electronic structural and photophysical properties of the synthetic dimer and 

the special pair of photosynthetic bacterial reaction centers, the ability of the former to 

assume different conformations may set it apart from the special pair in which 

conformational changes are, as yet, unobserved. Nevertheless, the synthetic dimer presents 

very interesting possibilities for future studies on the static and dynamic roles of solvents in 

intramolecular conformational changes and the interaction of excitonic and CT states. 
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ADDITIONAL RESULTS AND DISCUSSION 

A small number of hole bum experiments were performed on the dimer. A more 

extensive study had been planned, however, appropriate burning wavelengths proved 

unobtainable with our laser system at that time. For these experiments the solvent was not 

one of the three featured in paper I in this section but was n-bromo butane. This is a 

relatively nonpolar solvent which was purified prior to the experiment and contained 1% 

(by vol.) pyridine. The absorption spectra displayed two absorbing species, 685 nm and 

705 nm, at T=1.6 K similar to the other three solvents used in this study. The hole burning 

experiments were conducted at T=1.6 K. 

Figure 1 shows a typical hole (Xg=684.40 nm). The percentage change in optical 

density (AOD) is 14% at Xg. The hole was read using a double beam absorption apparatus 

with a read resolution of 0.2 cm"^. The laser used for the experiments was a Coherent 699 

ring laser (pumped by an CW Argon ion laser) which was operated in single frequency 

mode (linewidth 20 MHz). The holewidth, corrected for read resolution, is 0.6 cm"^. It is 

doubtful that this width represents twice the homogeneous width for the 685 nm 

component, The linewidth obtained may not be determined by excited stale dynamics alone 

as experimental conditions could interfere with this. The bum power was 190 mW/cm^ 

and the bum time was 180 s. In order to obtain Yhomo ̂  shorter bum time and lower bum 

intensity should be utilized to circumvent power broadening and saturation effects which 

will lead to hole broadening [59]. Ideally a AOD of no more than 5% should be used to 

obtain accurate dynamical information. In addition to these experimental considerations 

the overlap of the absorption proHles of the 685 nm and 705 nm components makes the 

assignment of the hole to a particular component questionable. 

The narrow ZPH could be due to either a vibrational level in the 705 nm state (-450 

cm"^) or zero point decay for the 685 nm component's excited state. The absorption in this 

region is dominated by the 685 nm component and thus the ZPH and corresponding 

pseudo-phonon side band hole (PSBH) lying to lower energy are assigned to the 685 nm 

component. No other satellite holes were observed. Franck-Condon factors for Chi a Sj 
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Figure 1. Hole burned spectra for dimer in n-bromo butane, T=l.6 K. Xg=684.4 nm. 
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vibrational modes are ^.02 [60] (Chi a in antenna of PSI-200) and the F-C factors are 

thought to be similar for this molecule. Therefore it is extremely unlikely that this ZPH is 

due to the 70S nm state. 

The pseudo-PSB lies ~13 cm"^ to lower energy and is a result of the burning of sites 

(whose zero-phonon frequencies lie lower than Og) which absorb cOg via their phonon 

sideband. Phonons for chlorophyllic molecules in protein systems have 17-30 cm*^ 

phonons [60-62] associated with them; the value determined here is very close to this range 

and represents a chlorophyll dimer-solvent low frequency mode (phonon). Weak electron-

phonon (e-p) coupling is indicated for the 685 nm transition. This is collaborated by the 

very small Stokes shift observed in the fluorescence spectra of the 685 nm component for 

toluene, MTHF and DMF solutions of this molecule [63] and the prescence of sharpline 

fluorescence features on a broad fluorescence band for these three solvents [63]. The 

Stokes shift is ~2So)jjj and with 0)^=13 cm*^ and an estimated S<1 (weak coupling) the 

Stokes shift would be neglegible. It was not possible to obtain S (Huang-Rhys factor) 

directly. 

It seems reasonable that the phonon frequency, (Ojq, for the 705 nm component 

would be similar to that for the 685 nm component, ~13 cm"^. This provides a more 

accurate method of estimating the e-p coupling strength (S) of the 705 nm component than 

that given previously [63], S=3-5 and a>jjj=50-30 cm*^. With the Stokes shift of the 705 

nm component, conformer B, being 300 cm"^ [63], S can be esimated to be approximately 

11. This would represent a case of very strong e-p coupling and a zero-phonon transition 

whose Franck-Condon factor, exp(-S), would render it as a highly forbidden transition. 

The observation of a featureless fluorescence band corresponding to emission from 

conformer B [63] confirms the presence of strong coupling (absence of line narrowing) 

observed with a variety of excitations [63]. 

The large value obtained for S, II, could be interpreted as indicating a shift in the 

excited state potential well relative to the ground state well. The coordinate considered 

here would be that defined by the bicycling motion that has been proposed to occur in the 

excited state. A large range of values for the dihedral angle were considered as possible for 
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this molecule based on computer modelling and steric interactions [63]. This explanation 

would not invoke any C-T character for the excited state (720 nm) which fluoresces. It 

does not address the temperature dependent decay of the 720 nm fluorescence, as observed 

for DMF [63] (see Fig. 3) which may or may not involve a C-T state. 

The magnitude of S, 11, is similar to that observed for charge-transfer states of ic-

molecular donor-acceptor complexes [64]. This would assign the 720 nm fluorescence as 

that emanating from a C-T state. This assignment, however, would be in contradiction 

with the interpretations put forth previously in regard to the picosecond transient absoiption 

and fluorescence measurements of Johnson et al. [58]. Their results were interpreted in 

terms of the more polar solvents stabilizing a C-T state which then "bled-off ' the excited 

state population with the C-T state being either dark or IR emitting. The manner in which 

the proposed C-T state is mixed with the excited state of the dimer is still not known. It 

may be possible that more than one C-T state could exist with the lowest energy C-T state 

lying lower than the excited state well of conformer B (705 nm). The curve crossing for 

this state and the excited state of conformer B could be such that thermal activation is 

necessary to cross the barrier to populate the C-T state. An activation energy is calculated 

later in this section. This more accurate estimate of S points out the uncertainties that are 

still present in the potential energy diagram proposed for this unusual molecule [63]. The 

general notion of stabilizing a C-T state with more polar solvents (higher e, dielectric 

constant) and hence lowering its energy [63,65], so that it can mix more readily with the 

fîrst excited state of the molecule, can itself be questioned. The concept of the polarity of a 

solvent needs to be examined more closely to do this. 

When the polarity of the solvent is sufHciently high it has a stabilizing effect on the 

charge transfer state of a molecule. The dielectric constant (E) is the measure of polarity 

employed here. The temperature dependence of this quantity is important to discuss since 

our data were gathered over a wide temperature range (5-300 K). c can be defmed using 

the Debye expression: 

(E-l)/(e+2) = N/3 X {a+n /̂OkTEo)} (1) 
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Where a is the polarizability, ^ is the dipole moment of the solvent, and N is Avogadro's 

constant. As the temperature of the solvent decreases from room temperature to the glass 

transition temperature (Tg) or to the freezing point (Tq^) e increases by as much as a factor 

of 5 for polar solvents [66-69] over this temperature range. In particular, for DMF e=38 at 

T=293 K and 6=58 at T=213 K [66]. For nonpolar or weakly polar solvents such as toluene 

(e=2.4) or MTHF (e=7) the temperature dependence of e is neglegible and the molecular 

polarizability, a, becomes more important in determining E. 

In general, e for polar solvents assumes a smaller value when T<Tg which is similar 

to that for a nonpolar solvent when T<Tg [70]; the values for e would vary somewhat upon 

the values for a, which are not well known for all solvents. The physical reasoning for this 

is that in a glass the solvent dipoles are randomly oriented and unable to reorient 

themselves while in the glassy state. The stabilizing abilities of a polar solvent, e.g., DMF 

and MTHF, are effectively reduced when T<Tg thus leading to the observation of less 

dramatic differences in the interactions between a regular excited state of the dimer and a 

C-T state in the three solvents used. These differences would be much more pronounced 

when T=Tg ( i.e., when solvent molecules once again are mobile). The effect of the 

solvent's physical and spectral properties of the chlorophyll dimer can be clearly seen 

when DMF is used as the solvent. 

Figure 2 is a plot of the position (nm) of the 720 nm fluorescence band versus T (K) 

for the dimer in DMF. The smooth curve is drawn through the points. This plot is very 

similar to that obtained for toluene [63]. This smooth curve displays a feature that the 

curve for toluene does not, a bimodal shape with two inflection points! These inflection 

points are ~130 K and ~210 K. The glass transition and melting transition temperatures are 

129 K and 212 K, respectively. A similar plot for MTHF, which has an intermediate 

polarity between toluene and DMF, shows this behavior but to a lesser extent than DMF. 

For DMF and MTHF temperature dependent photo-excitation spectra were not obtained, 

but it is credible that these data would, if plotted in a manner similar to the fluorescence 

band position, behave in a manner like toluene. In other words, the two plots, band 
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position of fluorescence and photo-excitation features versus T, would mimic one another 

in shape and position of inflection points. The toluene data indicated only one inflection 

point at approximately 180 K, the point. 

This plot, for DMF, can help in determining the nature of the 720 nm fluorescence 

band. This band was assigned as Stokes shifted fluorescence from conformer B, the 70S 

nm absorbing component. The possibility of this state having C-T character was 

considered earlier in this section and by Johnson et al. [58,63]. Consider the data just 

presented and the question is: is this behavior indicative of a solute or a solvent dominated 

action? Remember, our solvent, in this case DMF, can be considered small compared to 

our chlorophyll dimer(which has four pyridine molecules ligated to it) in terms of physical 

dimensions. The change in the viscosity of our solvent between 5 K and just above the Tjq 

should be a fairly gradual process and thus any physical (motional) process involving the 

solvent itself should also change gradually, such as rotating to align its dipole. A solute 

molecule, however, would need to experience configurational changes in a large number of 

solvent molecules, which comprise the solvent cage surrounding it, before it could undergo 

a large amplitude motion. 

Whatever is responsible for the blue shift (higher energy) in the fluorescence band 

position of the 720 nm band is a solute (dimer) determined process. The rather abrupt 

change observed for the fluorescence band position is caused by a geometry change of the 

solute (dimer) molecule which is able to undergo a bicycling motion (see ref. [63]) about 

the ethylenic bridge when enough solvent molecules are mobile (i.e., when the "cage" 

relaxes). Realistically, this motion is most likely a concerted process with the dimer and 

the solvent each participating to some extent. This motion, as evidenced by the 

fluorescence shifting to the blue, is more prevalent for the smaller solvent molecules (DMF 

< MTHF < Toluene). Unfortunately, the polarity of the these solvents is also in the same 

order (although reversed) as their physical size which makes this conclusion tenative. It 

would be a test for this proposal to use either a polar molecule that was very large 

physically or a nonpolar molecule that was very small physically. Of course the added 
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Figure 2. Temperature dependence of the fluorescence (720 nm) band position in DMF 
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constraint of the solvent being nonhydrogen bonding, to preclude aggregation, would make 

this choice somewhat more difficult. 

Figure 3 presents the plot of log of integrated fluorescence intensity for the 720 nm 

band (DMF) versus 1/T (1/K). A line has been drawn through the points to illustrate their 

linearity. The integrated intensity has been corrected for the addition of 685 nm 

fluorescence intensity. The range of temperatures encompasses that region where the 

fluorescence intensity of the 720 nm band undergoes decay. A similar type of plot for the 

decay of the 685 nm fluorescence in DMF and MTHF yielded values for A' for these 

solvents. A' being the difference in the zero point energies for the first excited state 

potential energy wells for the two conformers of the dimer. There is no firm experimental 

evidence for an additional excited state potential well, yet (two are known to exist). 

Johnson et al. [58] estimated that a C-T state lies approximately 1000 cm*^ higher in 

energy based on electrochemical data. This is low enough to interact with the regular 

excited state based on the calculations of Won and Friesner [71,72] for the primary electron 

donor of photosynthetic bacteria, where a C-T state that lies 2000 cm"* higher in energy 

than the FED can mix with the state to cause ultrafast decay. Also the "entities" here can 

not be assumed to be in thermal equilibrium, as was the case for the two excited states of 

conformer A and B in calculating a value for A*. 

An activation energy. Eg, can be calculated from the data in Fig. 3, the quantum 

yield of fluorescence at room temperature and fluorescence lifetime [58]. The quantum 

yield of fluorescence can be expessed as: 

(|)fl(T) = ( kfl/Ckfi + AexpC-E^/kT))} (2) 

Where <l)pi(T) is the temperature-dependent quantum yield of fluorescence, kpj is the 

fluorescence rate (1/Tp|) and Eg is the activation energy for the process under 

consideration. The (}>pj(T=300 K)=.002 and Tpj=1.5 ps [58]. By scaling the integrated 

fluorescence intensity at T=300 K to any other temperature the quantum yield at that 
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temperature can be obtained and by making the reasonable assumption that does not 

change in the temperature range considered (100-300 K) kpj can be obtained, = tp| + 

•tjsfR, where encompasses all nonradiative processes (i.e., intersystem crossing, 

internal conversion). It is therefore possible to obtain by ratioing two quantum yields at 

different temperatures. The pertinent equation obtained by solving equation 2 as stated 

above is: 

Where 4*NR=1-4'F1 (he superscripts 1 and 2 refer to at T=Tj or T2. The activation 

energy calculated is ,80+. 10 kcal/mol (280 cm"^). No explanation for this relatively small 

activation energy is proposed at this time. 

Although some is known about this unusual molecule and its excited state dynamics 

through the results presented here and elsewhere [58,63] further experiments are necessary 

to fully understand what processes are taking place. A series of picosecond transient 

absorption and stimulated emission studies done at a variety of temperatures between S K 

and 300 K with several solvents of different polarity would yield the information necessary 

to further refine the model for the excited state dynamics proposed here. 

Ej,= -kTjT2/(T(-T2)xIil( (3) 
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SECTION II. 

PERSISTENT SPECTRAL HOLE BURNING OF A STRONGLY 

EXCITON COUPLED ANTENNA COMPLEX 
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INTRODUCTION 

The water soluble bacterlochlorophyll-protein complex from Prosthecochloris 

aestuarii was the first chlorophyll containing complex to have its structure determined to 

atomic resolution (2.8A) by single crystal x-ray diffraction in 1975 [1]. This structural 

analysis preceded that of the reaction center (RC) of Rps. viridis [2] by nine years, but it 

has not received the same amount of attention as the RC. The structure of this chlorophyll-

protein complex, also called Fenna-Matthews-Olson (FMO) complex, after the 

investigators who first determined the structure [1] (Fenna and Matthews) and who first 

crystallized the complex [3] (Olson), consists of 21 Bchl a molecules organized into three 

identical subunits, each containing 7 Bchl a molecules (see Figs. 1 and 2). These subunits 

are related by a three-fold axis of symmetry. The center-to-center distances for 

chromophores within a subunit is 11.3-14.4 A, while each subunit within the trimer is 

separated by 24-36 A (edge-to-edge) from the other subunits. Recently the x-ray structure 

has been improved to 1.9 A resolution [4] and its complete amino acid sequence has been 

determined [5]. This complex provided several unique opportunities to researchers in the 

photosynthesis area. 

Relatively little high resolution spectroscopy has been performed on this 

chlorophyll-protein complex, in fact, comparatively little spectroscopy has been applied to 

this antenna species at all. The first spectroscopic investigation on P. aestuarii was 

performed by Sybesma et al. [6-8] in 1963 and 1964. The room temperature and 77 K 

fluorescence spectra of whole cells and the isolated Bchl a antenna complex were obtained. 

The kinetics of oxidation of the primary electron donor, P840, were also investigated [8]. 

At that time the species was still called Chl'oropseudomonas ethylica 2K. Olson [9] later 

unraveled the confusion concerning the name of the species and it became 

Prosthecochloris aestuarii strain 2K or simply P. aestuarii. The confusion actually 

stemmed from the fact that some early samples [9,10] were a mixture of Desulfuromonas 

acetoxidans and P. aestuarii. More recent fluorescence studies have been reported by 

Karapetyan et al. [11], Swarthoff et al. [12] and van Grondelle et al. [13]. Karapetyan et al. 
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Figure 1. Bacteriochlorophyll-protein complex as viewed down the threefold symmetry 

axis. The chlorophyll molecules have been removed for clarity and only the 

protein backbone is represented 
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Figure 2, Seven bacteriochlorophyll molecules in their protein environment for one 

subunit of P. aestuarii. The phytyl chains of each chlorophyll have been 

omitted for clarity 
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[11] studied the effect of dithionite on the fluorescence properties of whole cells off. 

aestmrii. Van Grondelle et al. [13] investigated the size of the antenna-protein complex by 

using singlet-singlet quenching. Swarthoff et al. [12] studied the temperature dependence 

of the fluorescence of whole cells, as well as, just the anteima complex. All of these 

studies were consistent in their findings with only one fluorescence feature, ~830 nm, 

appearing at low temperature (5 K) and the fluorescence spectrum being more complicated 

at room temperature (two or more features) [6,7,11-13]. 

Lutz et al. [14] applied resonance Raman spectroscopy to comment on the extent 

which ligand (protein) interactions could affect the local environment of the seven Bchl a 

molecules in each subunit. The extent of ligation for each Bchl a molecule was estimated 

as was the extent of hydrogen bonding to each Bchl a(via the carbonyl group on the 

porphyrin macrocycle). In addition, Lutz et al. [14] firmly established that the lowest 

absorbing electronic transition (S}<—Sg) was in fact the Qy transition. 

Swarthoff et al. [15] obtained linear dichroism spectra for both whole cells and the 

isolated antenna species. The linear dichroism spectra from the isolated antenna species 

showed veiy little, if any, LD signal in the or Qy spectral regions [15]. 

Causgrove et al. [16] performed polarized pump-probe spectroscopy at room 

temperature on the band of the antenna complex from P. aestmrii. They observed that 

at 603 nm the polarization decays with a mean lifetime of 4.8 ps. Their data were analyzed 

using an exciton hopping model and one of the known geometries [4] of the complex 

(hexagonal). The Forster mechanism was utilized in their analysis and this mechanism will 

be examined more closely latter in this section. 

From a theoretical modelling standpoint several groups [17-24] have attempted to 

explain the structured absorption spectra of the Qy-manifold and circular dichroism (CD) 

spectra. Phillipson and Sauer [17] tried Htting the absorption and CD spectra by using a 

computerized Htting procedure involving only J components. The correct number to use 

would have been 7, for 7 Bchl a molecules, but they were operating under the incorrect 

assumption, which was reasonable at that time, of there being 4 subunits of 5 molecules 
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each [3,17]. The error of their approach was clear when the x-ray structure was obtained 3 

years after they reported their analysis. 

Olson et al. [18] attempted a similar fitting of the absorption and CD spectra in 

1977. Their analysis resulted in assigning six components instead of seven [18], even 

though they acknowledged that seven components should be preseht. Two papers by 

Whitten et al. [19,20] in 1978 and 1980 presented analyses of the absorption and CD 

spectra using 4th and 8th derivative spectroscopy. They succeeded in assigning a total of 

seven components in both the absorption and CD spectra, but did not attempt a theoretical 

analysis [19,20]. The most complete theoretical treatment of the antenna complex has been 

that of Pearlstein and coworkers [21-24]. 

Pearlstein and Hemenger [21] reported on the first theoretical calculations performed 

on this complex. One of the major difficulties they faced was the assignment of what they 

termed as the "environmental shift". A very active aspect of the theoretical approaches to 

this complex is assigning the diagonal energies for each Bchl [21-24]. These are expected 

to differ due to the differences in the local environment (protein) and conformation for each 

Bchl. The extended dipole method was used by Pearlstein and Hemenger to calculate the 

exciton matrix elements [21]. Their fit of the absorption and CD spectra using the 

conventional geometry for the Bchl a molecules was poor [21]. When the lowest 

electronic transitions for the Bchl a molecules, S}<-SQ, were assumed to be x-polarized 

instead of y-polarized agreement between theory and experiment was improved [21]. 

However, this assumption was shown to be incorrect by Lutz et al. [14] several years latter. 

A significantly different approach was proposed by Pearlstein [22] in 1988. He 

proposed that, in solution, microcrystals (which are known to exist [25]) are formed and 

that they did so in an equatorial configuration which allowed relatively strong (excitonic) 

interactions between Bchl a molecules belonging to different trimers (see Fig. 3). Such 

interactions are known to be very weak for hexagonal or trigonal crystals of the trimers 

[26]. These interactions result in the exciton interaction matrix expanding to 14x14 (two 

subunits). In addition, Pearlstein allowed for three different diagonal energies for the 7 
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Figure 3. Justaposition of two trimer units of P. aestiiarii: a.)packing as in Ihe trigonal 

crystal configuralion (or hexagonal), b.)packing in Pearlstein's proposed 

equatorial configuration 
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Bchl a based on the number of aromatic amino acid residues in contact with each Bchl a 

[22]. Calculations by Pearlstein using this new solution configuration (with his method of 

assigning the diagonal energies) led to good fit for either the absorption or CD spectra, but 

not both simultaneously [22,23]. Pearlstein has also examined variations of several of the 

adjustable parameters (dipole strength, geometry of coupling) in this model [24]. 

However, agreement between theory and experiment was still unsatisfactory. A quantum 

chemical approach of determining the diagonal energies has been presented recently by 

Gudowska-Nowak et al. [27] and results in the 7 Bchl a molecules having their Qy 

absorption bands between 740 and 840 nm before the exciton interaction "turns on". They 

examined the effect of the axial ligands (amino acid residues), as well as, the orientations 

of the metal ions, neighboring amino acid residues and the substituents of the Bchl on the 

Qy transition energies. In addition, the intrinsic conformational variations (porphyrin 

skeletal variations) were investigated and determined to have as great an effect as the above 

mentioned considerations [27]. At this time Gudowska-Nowak et al. [27] have not 

calculated the exciton interaction matrix elements (off-diagonal terms). 

From a photosynthetic viewpoint this system has provided the opportunity to 

evaluate the theories that exist to describe electronic excitation transport (EET) in 

photosynthetic antennas. These theories have been extensively discussed and reviewed in 

the literature [28-32]. The pebble-mosaic model for EET proposed by Sauer [30,32] was 

found to be consistent with the structure of the FMO complex. This model described 

groups of chlorophyll molecules (subunits) which were interacting strongly (excitonically) 

among themselves but which interacted weakly via the Forster energy transfer mechanism 

with other subunits. Thus, the EET would take place via a random walk of excitation 

between subunits of chlorophylls. The excitation would be delocalized within any 

particular group of chlorophylls, however. 

The connotations of "strong" and "weak" describing coupling between molecules or 

groups of molecules should be explained further. Energy transfer can occur using several 

different mechanisms [33,34]. The idealized case (vibrational structure of donor and 

acceptor neglected) of energy transfer from a donor (D) to an acceptor (A) will be 
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presented first and then three cases where the vibrational structure is considered, however, 

the coupling matrix element U=<4'^*F^| H^l is related differently in each case to 

the vibrational and electronic spectra of A and D. Hg is the coupling Hamiltonian, and 

and are the electronic wavefimctions for the donor and acceptor, with the asterisk 

denoting electronic excitation. 

The rate of energy transfer (np) from D to A, in the absence of vibrational levels can 

be approximated, 

nu = 2jc|u|h-^ ifAE«4|u| (1) 

nD»0 ifAE»4|u| (2) 

With AE being the energy difference between the excited electronic states of D and A (the 

donor is assumed to be the higher lying state). 

In the first case strong coupling shall be considered. The donor and acceptor are 

assumed to have vibrational levels for all three cases presented here. In strong coupling 

I u| is assumed to be larger than AE and the widths of both the A and D excited electronic 

states (due to pure dephasing). For example, excitation of any level in the vibrational 

manifold of D* may be followed by energy transfer to any vibrational levels of A*. In this 

case the following rate would result 

n = 27i|u|h-l (3) 

In the second case, that of weak coupling, I u| is considered to be of comparable 

magnitude or smaller than the electronic bandwidths. In addition, the vibrational levels are 

sufficiently narrow and resolved so that energy transfer inbetween distinct vibrational 

levels must be considered. In this case, which is similar to the strong coupling case, U is 

replaced by Vy, which is the interaction energy between individual vibrational levels of the 

donor and acceptor. The corresponding energy transfer rate is 



www.manaraa.com

88 

n = Z2n|V|j|h-^ (4) 

with summation over all energetically allowed donor and acceptor transitions. 

The last case is called very weak coupling. Here U is smaller than the electronic 

absorption bandwidths and the vibrational manifold exhibits a density that is large (but 

constant) compared to U. The number of available acceptor states is thus proportional to 

I u|, which results in a I u| ̂  dependence for the transfer rate, 

n = 32|u|V^J (5) 

where J is defîned as the overlap integral which takes into consideration the vibrational 

Franck-Condon factors, the density of the vibrational manifold and conservation of energy. 

In simpler tenns, in very weak coupling vibrational relaxation is much faster than the step 

of transferring the energy between D and A and therefore the probability of back-transfer 

of the energy is negligible. 

For the antenna complex considered here U and AE can be estimated to be -200 

cm"^ (from Pearlstein [24]) and ^100 cm"^ (separation between exciton states, this work), 

respectively, based on the low temperature absorption spectra. Thus, for a subunit the 

energy transfer that occurs would fall within the strong or, perhaps, weak coupling regime. 

However, the energy transfer would not be considered to be in the very weak coupling 

regime. 

This antenna complex whose exact structure is known provides an ideal system in 

which to investigate EET. With the large quantity of knowledge present in the literature 

concerning the excited state dynamics of Bchl a and the exact structure of this complex, the 

opportunities to evaluate the current theories of EET, in particular the Sauer pebble-mosaic 

model, by obtaining high resolution optical spectra several orders better than existing in the 

present literature were enticing. In addition, this complex has the important advantage of 

relative simplicity over the RC systems, such as Rb. sphaeroides and Rps. viridis, in the 
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study of strongly interacting chromophores. The RC systems are more complicated due to 

the well acknowledged possibility of interaction with charge transfer states. The technique 

of spectral hole burning provided a most ideal method to obtain this information. 
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EXPERIMENTAL METHODS 

Samples 

Samples of the water soluble antenna-protein complex from Prosthecochloris 

aestuarii were generously provided by Dr. Roger E. Fenna (University of Miami(Fl.), 

Medical School). The samples were in a buffered solution of water and were diluted with 

two parts potassium glycerophosphate 75% (in water, K&K Laboratories) to obtain a good 

glass forming solvent. The concentration was such that an OD of ^.3 at 814 nm (4.2 K) for 

a 1 cm path length was obtained. 1 cm (i.d.) polystyrene tubes were utilized and a brass 

sample holder of local design which provided optical access to the sample was used. 

Cryogenic Equipment 

The cryogenic apparatus described in section 1 were also used here. In addition, 

some spectra were obtained at 1.6 K which necessitated pumping on the liquid helium with 

an auxiliary vacuum pump. When this was performed it was possible to take helium past its 

lambda point of 2.25 K to a temperature of 1.6 K. 

Experimental Apparatus 

The apparatus for reading the prebum and hole burned absorption spectra was a 

Bruker IPS 120 HR Fourier-transform spectrometer. A visible-NIR source consisting of a 

tungsten lamp (range 3000-25000 cm'^) was used in conjunction with a Si-diode detector 

(operated at room temperature) to obtain the spectra presented here. Both electronic and 

optical filters (where necessary) were used to obtain spectra with an optical resolution of 

upto 1.0 cm"^. Spectra presented here were the average of 20-50 scans. 

The bum irradiation was provided by two sources. The first consisted of a excimer 

pumped dye laser which was described fully in the experimental methods section in chapter 
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1. The second bum laser was a Ti:sapphire laser (model T-1000, Excel Technology Inc., 

Bohemia, New York) pumped by a NdrYLF (model I-IOOO and Q-1000, Excel Tech.). The 

laser system was operated at 1 KHz and provided tunable radiation from 670-10S0nm. The 

laser linewidth was SO GHz (provided by a Coherent 3 plate birefringent filter assembly) 

and exhibited a pulse width of 35 ns. Average power arriving at the sample was modulated 

using neutral density filters. 

The fluorescence spectra presented were obtained using the apparatus described in 

the experimental methods portion of Section I. 
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PAPER 1. SPECTRAL HOLE BURNING OF A STRONGLY EXCITON COUPLED 

BACTERIOCHLOROPHYLL a ANTENNA COMPLEX 
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Spectral Hole Burning of a Strongly Exciton 

Coupled Bacteriochlorophyll a Antenna Complex 

S. G. Johnson and G. J. Small 

Chemical Physics Letters 1989,155,371. 
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ABSTRACT 

Persistent spectral hole burning is reported for the antenna complex of the 

photosynthetic bacterium Prosthecochloris aestuarii. This complex contains subunits 

which contain seven BChl a molecules. The hole burning data are shown to be consistent 

with an excitonically coupled system. The data also provide the magnitude of the 

inhomogeneous broadening, a decay time of ~2S0 fsec for an upper exciton level and the 

magnitude of the linear exciton-phonon coupling of the optical transition associated with 

the lowest energy absorption system. 
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Spectral hole burning of the electronic transitions of chromophores imbedded in 

solid host media has been observed for a wide variety of organic and inorganic systems [1] 

and very recently for photosynthetic antenna [2-5] and reaction center complexes [6-8]. 

However, the technique has not been applied to an organic or biomolecular system in 

which strong excitonic interactions (few hundred cm"^) between monomers give rise to 

resolved excitonic structure in the optical absorption spectrum. In this letter we report the 

first observation of such for the bacteriochlorophyll (BChl) a-protein from the green 

photosynthetic bacterium Prosthecochloris aestuarii. 

The crystal structure of this protein [9], which has now been refined at 1.9 A 

resolution [10], shows that the basic structural unit is a trimer of subunits containing 7 

BChl a molecules. Nearest neighbor Mg...Mg distances for chromophores within the 

subunit vary between 11.3 and 14.4 A and, thus, significant exciton interactions can be 

expected. These interactions are believed to be important in determining the resolved 

structure in the absorption spectrum shown in Fig. 1. Spectral fitting procedures have led 

to the assignment of seven exciton components [11]. However, the agreement between the 

observed and calculated linear and circular dichroism spectra is poor [11,12]. The 

difficulty of attaining a firm theoretical understanding of the spectra is compounded by the 

fact that the BChl a monomers of the subunit are energetically inequivalent due to different 

intramolecular geometries and ligand (protein) interactions [12-14]. Nothing is known 

about excited state relaxation dynamics within the Qy-exciton manifold of the subunit. 

Using persistent hole spectra we will establish the following: the inhomogeneous 

line broadening contribution to the absorption component profiles; that the spectra are 

consistent with a coupled chromophore system; that the exciton-phonon coupling 

associated with the optical transition is wëak; and that the relaxation time of an upper 

exciton level is ultra-fast (250 fsec). Experimental details will be given elsewhere [15]. 

Briefly, P. aestuarii samples were kindly provided by Roger E. Fenna and experiments 

performed with a pulsed dye laser (0.2 cm"^ linewidth) and a Bruker IFS 120 HR Fourier-

transform spectrometer (operated with a 1 cm'^ read resolution). 
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Figure 1. Hole burned spectrum for the antenna-protein complex from Prosthccochloris 

aestuarii at 1.6 K. The bum wavelength Xg = 825.0 nm. Hole characteristics 

FWHM = 5.3 cm*^ (uncorrected for 1 cm'^ read resolution), 40% hole depth. 

Bum intensity 1 mW/cm^ for 70 min @ 30 hz (10 ns pulse) 
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Figure 1 displays a saturated zero-phonon hole (ZPH) burned into the lowest 

energy 825 nm (12120 cm"^) absorption component. The ZPH is coincident with the bum 

wavelength (Xg) of 825.0 nm and represents a peak O J>. change of 40%. Spectra obtained 

with different Xg-values within the 825 nm band show that the ZPH tracks Therefore, 

the ~ 90 cm'^ FWHM of the 825 nm band is largely determined by inhomogeneous 

broadening. Such broadening is presumably due to statistical fluctuations in structure from 

subunit to subunit. Fluorescence line narrowed spectra associated with the 825 nm 

component have also been obtained [15] which further support the dominance of the 

inhomogeneous line broadening. Thus, the 825 nm component does not suffer 

significantly from broadening due to strong linear exciton-phonon coupling, consistent 

with a recent observation for the Qy transition of Chi a and b antenna pigments in 

photosystem 1200 particles [3]. Figure 2 is the A OD spectrum associated with Fig. 1 and 

the pre-bum absorption spectrum (not shown). The ZPH at 12120 cm"^ is clearly evident. 

Figure 3 shows the bum time dependence of the spectrum in the vicinity of this 2TH. The 

growth of the ZPH with increasing fluence is apparent. A 30 cm~^ pseudo-phonon 

sideband hole at 12090 cm'^ is also apparent despite the small AOD changes (^.02). The 

corresponding Huang-Rhys factor (determined from bum time dependent spectra in Fig. 3 

and others by the procedure described in ref. 3) is 0.5. Thus, the linear exciton-phonon 

coupling is weak, as is the case for the Chi a core and Chi ajb antenna complexes of PSI 

[2,3]. Protein phonons of -30 cm"^ also characterize these systems [2,3]. The weak linear 

exciton-phonon coupling is further evidenced by the fluorescence experiments [15] which 

provide a Stokes shift of 40 cm"^ for the 825 am band. This value is in reasonable 

agreement with that calculated by the approximate relationship: Stokes shift = 2(0^8, 

using S = .5 and a cOj^ = 30 cm"^ Returning to the 12120 cm"^ ZPH of Fig. 2 we note that 

its FWHM is 5.3 cm"^ (uncorrected for read resolution). Narrowing to 4.0 cm"^ is 

observed for shallower holes. However, higher resolution studies as a function of bum 

fluence and intensity are required in order to determine the minimum width [16]. Thus, we 

draw no dynamical inferences from the 4 cm"^ hole width. 
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Figure 2. Difference hole burned spectrum of Figure 1 displaying sharp ZPH coincident 

with Xg, broad pseudo-phonon sideband hole displaced 30 cm"' to lower 

energy of ZPH, and satellite hole @ 814 nm 
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Perhaps the most interesting aspect of Fig. 2 is the observation of the 50 cm"^ wide 

satellite hole located just to the left of 12250 cm'^. This hole, produced with Àg = 825.0 

nm, is centered at the most intense absorption feature of Fig. 1 near 814 nm. If the 814 and 

825 nm absorption bands were due to uncoupled (unconnected) but energetically 

inequivalent BChl a monomers in the subunit, the 814 nm satellite hole of Fig. 2 would not 

be observed. Its observation is consistent with the 814 and 825 nm bands being due to 

exciton states of the subunit since the delocalization (which leads to exciton behavior) 

provides connectivity between the states (bands). The peak A O.D. of the 814 nm hole in 

Fig. 2 is 10% (see Figs. 1 and 2) compared with 40% for the 825.0 nm hole. By taking into 

account the difference in the width of the two holes and the pseudo-phonon sideband hole 

associated with the 825.0 nm ZPH, it can be seen that the fractional integrated O.D. 

changes associated with the burning of the 814 and 825 nm bands are roughly equal. 

Figure 2 and other spectra (e.g., Fig. 4) indicate that an antihole (increase in absorption) 

occurs at -12350 cm'^ and that it is associated with the 814 nm hole. It is possible that the 

antihole could be interfered with, to some extent, by a broad hole associated with the 

second most intense absorption band at 804 nm. Spectra with an improved S/N ratio are 

required to reach a definite conclusion on this. Observation of the anti-hole is consistent 

with nonphotochemical hole burning [1]. We note that experiments were performed on the 

same sample over a period of several days and that during this period the sample was 

subjected to thermal cycles (1.6-100 K). No photodegradation was observed based on the 

1.6 K absorption spectra obtained following laser irradiation and a thermal cycle. A 

contribution to the hole spectra from a photochemical mechanism would not, of course, 

alter the principal conclusions (see Abstract). 

Since inhomogeneous line broadening exists in this system and because the 

correlation between the distributions of excitation energies for the 825 and 814 nm 

components is unknown, no interesting dynamical inferences can be drawn from the 50 

cm'^ width for the 814 nm hole of Fig. 2 (altliough there is line narrowing since the width 

of the 814 nm absorption band is -100 cm'^). To study the dynamics of the 814 nm 
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Figure 3. Bum time dependence of the hole spectrum in the vicinity of 825 nm. Bum 

times (from top to bottom) are 3, 16 and 70 min. The OD scale is equivalent 

for the three spectra. Bum intensity same as for Figs. 1 and 2. Xg = 825.0 nm 
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exciton component, it is necessary to bum directly into this component. This has been 

done for several Xg-values. Importantly, the hole position and width is independent of Xg 

to within experimental uncertainty. An example of a spectrum is shown in Fig. 4. The 

hole width is 40 cm'^, which is not so different from the 50 cm'^ value obtained from Fig. 

2. The difference may be due to incomplete correlation of the type necessary to have 

yielded a 40 cm~^ hole width in Fig. 2. Our results from hole burning into the 825 nm 

component indicate that [17] the 40 cm~^ width is due to homogeneous broadening and, 

therefore, that the population decay time of the 814 nm exciton is ~ 250 fsec. This ultra-

fast decay is presumably due to downward scattering to a lower exciton level(s) which is 

accompanied by phonon emission. It has been suggested that [11] a weakly absorbing 

exciton level is located midway between the 814 and 825 nm level but we view this 

assigtunent as tentative. The above type of scattering can arise from the linear and higher 

order terms in the expansion of the resonance energy transfer integrals about the 

equilibrium geometry of the subunit excited state [18]. That is the weak coupling energy 

transfer theories (e.g., Forster), which appear to be appropriate for subunit to subunit 

"hopping" transfer [19], are not applicable since the exciton states are already diagonal 

with respect to the intermolecular potential energy (static lattice). The picosecond pump-

probe depolarization studies of Causgrove et al. [19] indicate that subunit to subunit 

excitation transport occurs at room T in ~ 14 psec. Our results show that ~ 100 fsec time 

resolution will be required to resolve exciton relaxation within a subunit. 

With reference to Fig. 4, we note that a satellite hole at 825 nm is not discernible 

from the burn at 814 nm. Given the 40 cm'^ width of the 814 nm hole, the difference 

between the peak ODs at 814 and 825 nm and the incomplete site excitation energy 

correlation (vide supra), the anticipated peak AOD for the 825 nm satellite hole is -0.003. 

With the S/N ratio of Fig. 4, this AOD change is too small to be detected. Future studies in 

which deeper primary holes are utilized are planned. 

Very recently Pearlstein [20] has proposed a third structure (hexagonal and trigonal 

structures exist for crystals of P. aestuarii) for the protein trimer in solution in which the 

trimeis pack in an equatorial configuration. This configuration allows for strong 
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Figure4. Difference hole burned spectrum with Xg = 814.0 nm, 1,6 K. Hole 

characteristics FWHM = 40 cm"^ 10% hole depth. Bum intensity 4 mW/cm^ 

for 20 min @ 30 hz (10 nsec pulse) 
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interactions between BChl a molecules belonging to different trimers. Improved 

agreement between the calculated and observed absorption spectrum was obtained [20]. 

Polarized hole burning experiments with a single frequency dye laser are planned which 

will hopefully yield data that are useful for testing of the proposed structures. 
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ADDITIONAL RESULTS AND DISCUSSION 

Additional hole burning experiments were performed on the antenna complex from 

P. aestuarii using a Ti: sapphire laser pumped by a Nd:YLF. This laser system has been 

described in the experimental methods section of this chapter. The results presented here, 

in the form of two tables, are consistent with those in Paper I of this section, but are much 

more extensive. In addition to the hole burning experiments, line narrowed fluorescence 

spectra were obtained. All experiments described here were performed at 4.2 K. There 

were no noticeable differences in the hole spectra obtained at 1.6 K [35] and 4.2 K. The 

hole spectra will be discussed first with the results summarized in Table I. 

By irradiating in the highly structured Qy absorption profile at a variety of 

wavelengths (829-794 nm) a total of eight holes were observed (see Table I). These holes, 

depending on the bum frequency, were determined to be of either excitonic nature or due to 

downward energy transfer. As has been previously noted the structured absorption spectra 

is generally acknowledged to be the result of strong (excitonic) interactions between the 

Bchl a molecules. This idea has been further confirmed here by the observation to higher 

energy (higher energy than Xg) of excitonic satellite holes. The position of these holes 

providing the best means to date of unraveling the underlying structure of the low 

temperature absorption spectra. By burning directly into these excitonic components it was 

possible to obtain their excited state decay times (see Table I). It was reassuring to observe 

that the decay times for the lowest energy components exhibited were considerably slower 

than the higher energy exciton states in accord with the theory of strongly coupled states 

[28,29]. 

The fluorescence line narrowed spectra obtained by exciting into the vibronic 

progression for Sj electronic state were very useful for several purposes. First, the 

assignment of the low frequency inuramolecular vibrational modes of S ̂  was possible and 

these are summarized in Table II. Secondly, the degree of inhomogeneous broadening 

present in the lowest energy exciton component (the only component that would fluoresce) 

was confirmed. Lastly, it was possible to calculate the Stokes shift, from the difference in 
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the absorption and fluorescence maxima, which further supported the assignment of an 

excitonic component at an energy lower than 825 nm (827.1 nm). 

Both the hole spectra and the fluorescence spectra presented here were consistent 

with the antenna complex from P. aestuarii being a strongly coupled chromophore system 

[28,29]. The hole spectra provide for the first time the decay times from S j of the exciton 

components for this complex. It would be interesting to perform ultrafast pump-probe 

depolarization experiments on the Qy spectral region at 4.2 K with time resolution 

sufficient to resolve the decay times indicated here. Such experiments would provide 

confirmation of the results presented here. 

It is of special note that eight exciton components were determined within the Qy 

spectral region. This complex consists of a trimer of subunits each containing seven Bchl a 

molecules. Due to differing protein interactions and relative geometries it was thought that 

a maximum of seven absorption features existed. The observation of eight components 

brings into question the long held belief that the aggregations of trimers, which are known 

to exist in solution [25], form in hexagonal or trigonal arrangements. Such arrangements 

are known to hold the trimers far enough apart to discourage strong coupling between 

chlorophylls in different trimers. The data presented here supports the theory of Pearlstein 

[22-24] who proposed that the trimers aggregated in an equatorial fashion in solution which 

allowed strong coupling between chlorophylls in different trimers. It was acknowledged by 

Pearlstein [22-24] that at least some of the 14 (2x7) excitonic states would be very weakly 

absorbing, and therefore, perhaps, undetectable using the technique of spectral hole 

burning. It is significant, however, that hole burning is the only technique applied to this 

system (and reported on) that has been able to resolve the underlying exciton components 

in the Qy spectral region. 
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Table I. Exciton components indicated by hole burning 

Component Wavelength (nm)/(cm"^) Excited State 

Decay Time^ 

1 827.1 (12090) k20. ps*) 

2 824.4(12130) >20. ps 

3 816.3 (12250) 100 fs 

4 • 813.0(12300) 100 fs 

5 807.8 (12380) 100 fs 

6 804.8 (12425) 100 fs 

7 801.3 (12480) 100 fs 

8 793.6(12600) 100 fs 

^ Decay time of Sj electronic state as measured by burning directly into that state. 

^ Decay times obtained from homogeneous widths. See text for details. 
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Table H. Vibrational Modes for Lowest Energy State 

Excited State Ground State 

Freq. (cm"b® Freq. (cm'b^ 

199 199 

209 

216 

273 264 

286 290 

320 313 

350 361 

368 379 

415 426 

456 452 

484 479 

493 

510 

522 

^Excited state (Sj) vibrational frequencies this work. 

^From resonance Raman (see ref. 14). 
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SECTION m. 

TRANSIENT PHOTOCHEMICAL HOLE BURNING STUDIES 

OF REACTION CENTERS FROM 

Rhodobacter sphaeroides 
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INTRODUCTION 

The molecular assembly responsible for initiating charge separation in 

photosynthesis is called the reaction center (RC). The more general aspects of 

photosynthesis including the organization of the photosynthetic unit and various other 

details of the electron transport chain have been described in the general introduction, so 

here the focus will be on the RC. The RC consists of a primary electron donor (FED), 

accessory pigments and proteins. For the specific RC studied here, that of the purple 

photosynthetic bacteria Rhodobacter sphaeroides, the FED is a special pair of 

bacteriochlorophyll a(Bchl a) molecules and there are four accessory pigment molecules, 

two Bchl a and two bacteriopheophytin a (BFheo a) molecules. The following symbols are 

commonly used for the FED and accessory pigments; FED- F, Bchl- BL» BJ^, and BFheo-

HL, HJ^. The subscripts will be defined later when the structure of the RC is discussed, 

but briefly they refer to the protein subunits that the pigments are attached to. A detailed 

description of the RC will also be given later in this section. is the intermediate 

electron acceptor for the RC in the process of charge separation. Charge separation is 

initiated by the absorption of a photon by the the FED (F*<—F)and the promotion of the 

FED to its first excited state. This promotion can also be accomplished by the transfer of 

energy from the accessory pigments as will be discussed later in this section. Following 

excitation of F*, the charge separated species F^B^H^ forms in picoseconds via the 

reaction, P*B^H2^=>F^Bj^H][. 

The dynamics of the charge separation reaction, F*BH=>F^BH", are not well 

understood. Answers to two crucial questions regarding the initial step of charge 

separation as it takes place in reaction centers photosynthetic bacteria are being sought 

actively. The first question is what is the role of B, the Bchl a monomer on the L-side, in 

the formation of the charge separated state, F^BH"? The second question is even more 

fundamental than the first, what is the nature or structure of F*, the excited state of the 

primary electron donor in the RC? Before the high resolution spectroscopy performed on 

this RC is reviewed it is pertinent to have a better appreciation for the physical dimensions 
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and geometry of the RC. This information was provided by the technique of single crystal 

x-ray diffraction and has recently been judged worthy of a Nobel prize in chemistry [1]. 

The x-ray diffraction experiments of Deisenhofer et al. [2,3] led to the determination 

of the structure of crystals of the photosynthetic bacteria Rhodopseudomonas viridis at 3.0 

A resolution. Michel had demonstrated the ability to grow crystals of the RC of Rps. 

viridis two years prior to this time [4]. The structure determination for Rb. sphaeroides 

was accomplished by two groups of researchers (Allen et al. [S] and Chang et al. [6]) 

utilizing the coordinates from Rps. viridis and the Patterson search (molecular replacement) 

method. The most precise structural determination for Rb. sphaeroides is that of Allen et 

al. [7] with a resolution of 2.8 A. Several excellent review articles have appeared on this 

subject [1,8,9]. 

The RC of Rb. sphaeroides consists of six pigment molecules (4 Bchl a and 2 BPheo 

a), two quinone molecules (ubiquinone), one non-heme iron, and three protein subunits (L, 

M and H). The pigment molecules and quinones are arranged in a fashion such that 

approximate C2 symmetry exists (see Fig. 1). Two Bchl a are at the top of the RC and are 

closely associated (center-to-center distance ~7 A). Closest to this special pair of 

bacteriochlorophylls are two other molecules of Bchl a. These are-10 A from the closest 

member of the special pair and related to one another by -C2 symmetry. These two 

molecules are commonly referred to as voyeur or monomer Bchl a (B^^, Bj^). After the 

voyeur Bchl a molecules are the two BPheo a molecules (H^^, Hj^) which are ~16 A from 

the closet member of the special pair. These are related by two-fold symmetry, as are the 

quinones that are next in line (-30 A from the special pair). The non-heme iron is situated 

at the bottom of the RC, as featured in Fig.l, and lies along the ~C2 symmetry axis. The 

voyeur Bchl a and BPheo a molecules are referred to as accessory pigments. The RC of 

Rps. viridis is very similar to that of Rb. sphaeroides and differs only in the following 

ways: Bchl b replaces Bchl a, BPheo b replaces BPheo a, menaquinone replaces the L-side 

bound ubiquinone and a cytochrome molecule is bound to the protein on top of the RC. 

The subscripts L and M refer to the protein subunit which makes up the majority of 

the RC (in terms of mass) and which fixes the chromophores at their respective positions. 



www.manaraa.com

116 

Figure 1. Pigment structure for RC of Rh. sphaeroides R-26. Special pair at the top and 

non-heme iron and quinones at the bottom. See text for further details 



www.manaraa.com

117 

(BChlljBPh QAFb^'OB 

IBChl){ BPh" OAFB^'OB 

/ ^ slO'^s 

^(BChl)î BPhQiFe^^ 
/ X loS 

/ VS'̂ ŷ  
iBChD* BPh QAFB^'Q; -

IBChI); BPh QAFe^'Qe -

Figure 2. Charge separation and electron transfer reactions as they occur in the RC. The 

times are order of magnitude estimates for room temperature values. Subscript 

A is equivalent (o L and B to M 
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The three protein subunits comprising the RC each have a mass of -30-40 kDa. X-ray 

diffraction shows the presence of II transmembrane helices with the L and M subunits in 

close contact and forming, between them, a cylindrical core (elliptical in shape with axes 

-30 A and -70 A) [8]. The central core region is composed of 4 a-helices. The RC of 

Rps. viridis crystallizes in tetragonal shaped crystals with unit cell dirhensions a=b=223.5 

A, c=113.6 A and one RC (-145 kDa) in each cell [1]. The total length of the RC being 

-130 A with elliptical cross sections of 30 A and 70 A [1], The RC of Rb. sphaeroides is 

acknowledged to be of similar size and shape. 

Most importantly, spectroscopic evidence [10] has shown that electron transfer 

proceeds only down the L-side of the RC (see Fig. 2). This is remarkable since identical 

pigments occupy each "arm", L and M, of the the RC and they, as well as, the protein 

subunits, L and M, are related by -C2 symmetry [1-9]. There are subtle differences in the 

amino acid residues in the protein subunits that bind to the pigments [11,12]. Site-specific 

mutagenesis experiments [13-16] have investigated the effect of changing these residues on 

the electron transfer and charge separation kinetics. The deciphering of the protein's role 

in energy and electron transfer is one aspect where high resolution optical spectroscopy has 

been shown to be effective in giving additional information [9,17,18]. Techniques such as 

ultrafast and hole burning spectroscopies have been particularly effective in determining 

early time (fs=>ns) events involved in energy and electron transfer in photosynthesis 

[19,20-27]. The role of theoretical calculations in modelling the electronic structure of the 

RC states is an active one and has focussed considerable attention on the initial act of 

charge separation. 

There are two general schools of thought as to the role of B in the formation of 

P^BH". Either B acts as an intermediate electron acceptor in the reaction (i.e., P*BH => 

P+BIH =* P^BH") or B participates in a superexchange mechanism in which a state with 

B' character acts as a virtual state in the reaction P*BH=>P^BH". Both of these proposals 

have been theoretically considered and reported on [28-32], but no Hrm consensus has been 

reached. Marcus [28] considered both mechanisms recently in terms of being consistent 

with the kinetic and singlet-triplet energy splitting data and concluded that the two step 
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model fit better with the available experimental evidence. However, ultrafast 

measurements by Breton et ai. [19,33] on RC of Rb. sphaeroides and Rps. viridis with 100 

fs resolution showed no indication of B" forming (no bleach of the B band). Although, 

more recent ultrafast results [34] have provided a source of controversy in this matter. The 

ultrafast data will be discussed in detail later in this section. 

Won and Friesner [29] have found that the superexchange mechanism can 

adequately account for the electron transfer kinetics and singlet-triplet energy splitting if an 

internal charge transfer(C-T) state of the special pair is incorporated into the theoretical 

model. Marcus [28] did not make use of an internal charge transfer state in his 

calculations. Bixon et al. [30] supported the superexchange mechanism for the RC o{Rb. 

sphaeroides but did not utilize a C-T state. This field of research is active from both 

theoretical and experimental viewpoints and has been the subject of several review articles 

[31,32,35]. 

The model of Won and Friesner [29] brings up the second question proposed above, 

that concerning the nature of the state P*. A basic point of controversy is what, if any, 

amount of charge transfer character to assign to P*. Early experimental evidence based on 

hole burning [20-23], accumulated photon echo [22,23] and Stark effect spectroscopy [36-

39] suggested that P* could possess significant charge transfer character. Theoretical 

calculations by Won and Friesner [40-42], which utilized vibronic coupling of P* to a 

"nearly resonant" C-T state, were able to provide satisfactory fits to the unstructured 

photochemical hole spectra of Boxer et al. [20,21]. The C-T state was thought to lie :S2000 

cm'^ from the special pair transition (Sj^-Sg) and an exchange coupling strength of ^80 

cm'^ was found necessary to account for the lack of a zero-phonon hole in the spectra of 

Boxer et al. [20,21]. Two low frequency vibrational modes, 50 and 100 cm"^, were 

utilized by Won and Friesner for the vibronic coupling of P* to the C-T state. No specific 

molecular motion was attributed to these modes. 

The more recent hole burning experiments of Tang et al. [24,25] and Johnson et al. 

[26,27] which clearly show a zero-phonon hole(ZPH) in the photochemical hole profiles 

for the RC of Rps. viridis and Rb. sphaeroides are in contradiction with the theoretical 
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predictions of Won and Friesner [40,41] which allowed for ultrafast dephasing from P* and 

thus no ZPH would be observable. Their theory has recently been modified to account for 

the observation of a weak ZPH by allowing for a variable exchange coupling strength [31]. 

A more reasonable approach to the modeling of the hole spectra, as well as, the more 

general question of the nature ofP*, P870*/P960*, has been proposed by Hayes and Small 

[43,44]. 

The model proposed by Hayes and Small [43,44] is reviewed and expanded upon in 

detail in the additional results and discussion section in this chapter, so its merits will be 

only briefly outlined here. The anomalously large width of the hole spectra and absorption 

profiles of P870/P960 (Boxer et al. [20,21]) were explained in terms of coupling to protein 

phonons (linear electron-phonon coupling) and inhomogeneous broadening [44]. The 

coupling strength was thought to be moderately strong, S~4-5, based on the data of Boxer 

et al. [20,21] and inhomogeneous broadening of 150-350 cm"^ was indicated. No coupling 

to a C-T state was utilized. This model successfully accounted for the data of Boxer et al. 

[20,21], as well as, the thermal broadening data of Hayes et al. [44] for both Rb. 

sphaeroides oadRps. viridis. The role of C-T character in the excited state of the primary 

electron donor, P870*/P960*, can not be completely excluded, however, based on 

experimental evidence from Stark data [36-39]. 

Time regime experiments performed on RC of Rb. sphaeroides by Martin et al. [45] 

yielded several important pieces of information. Their experiments were performed with 

-100 fs time resolution at room temperature using excitation directly into the P870 

absorption band. The changes in the absorption spectrum were monitored at a variety of 

wavelengths both to the red (as far as 1240 nm) and to the blue (as far as 545 nm). The 

results of their experiments were that instantaneous (^100 fs) bleaching of P870 occurred, 

as well as, instantaneous induced absorption gain (over a broad spectral range, 600-1300 

nm) and stimulated emission from P870*, when P870 was directly excited with a laser 

[45]. The stimulated emission of P870* was observed to decay with a lifetime of 2.8±.2 ps 

[45] as was the induced absorption gain. Changes in the other portions of the spectrum, Qy 

bands of BPheo a and Bchl a, were observed to occur in ^100 fs and decay with time 
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constants of 2.8 ps. The observation of the photo-reduction of pheophytin in 2.8 ps and the 

observation of absorption gain at centered -1240 nm with a time constant of 2.8 ps 

indicating formation led to assignment of the time, 2.8±.2 ps as that for the 

reaction. No bleaching of the Bchl a monomer band was reported, 

only an electrochromic shift of this feature (occurring with a 2.8 ps lime constant) [45]. 

The local electric Held of leads to a shift of the absorption spectra of B. Earlier 

time regime studies [46-48] had led to a great deal of controversy concerning the degree of 

involvement of B^^ in electron transfer. These studies were hampered by either laser pulses 

of inappropriate length (33 ps) or suspect data analysis [46,47]. The studies of Martin et al. 

[45] (the highest resolution at that time, 1986) determined no involvement unless it 

occurred in ̂ 100 fs. Similar experiments performed on RC of Rps. viridis yielded identical 

results (instantaneous bleaching, ^100 fs, and formation of P^B^^H^ in 2.8±.2 ps) [49]. 

The experiments on Rps. viridis differed somewhat in that excitation into the BPheo b and 

Bchl b bands was also performed and energy transfer was observed to occur in 3100 fs 

[49]. Similar experiments were performed on RC of Rps. viridis by Wasielewski and Tiede 

[50] with .45 ps time resolution and they determined a 6.0 ps time constant for the initial 

charge separation step at room temperature. 

Ultrafast experiments by Breton et al. [33] at room temperature and with-150 fs 

time resolution on RC of Rb. sphaeroides using excitation into the BPheo a and Bchl a 

(Qy) bands yielded similar results to those of Martin et al. [45]. Instantaneous (3150 fs) 

energy transfer to P870 from either B^^ or was observed, however when 

excitation and observation were within the Qy of B^^ ̂  a transient bleach which recovered 

in -400 fs was noted [33]. This phenomenon was reported to occur in Rps. viridis as well 

by Breton et al. [49]. This was not interpreted as evidence for involvement of BL in 

electron transfer (i.e., P'hs was not considered to be indicated) instead several other 

explanations were considered. The most plausible explanation proposed [33] was that 

-10% of the Bchl a monomer molecules relaxed to the ground state in -400 fs (B*:^B) 

without transferring energy to P870, while the remaining fraction (.90) transferred their 

energy to P870. The observation of the dependence of the quantum yield of charge 
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separation (^^s) "Poo excitation wavelength seemed to corroborate this explanation with 

((>Cs=-93 (for excitation into the Bchl a monomer band) and <j>çg=1.0 (for P870 excitation) 

[51]. 

The experiments on RC of Rb. sphaeroides were also performed at T=10 K with 100 

fs time resolution and reported by Breton et al. [19]. The initial charge separation step 

(P*BH=:>P^BH') was stated as occurring in 1.2±.l ps [19]. Results forRC ofRps. viridis 

were reported in the same paper and a time constant of .7±.l ps for the initial charge 

separation step was reported [19]. The 400 fs transient bleach in the Bchl monomer region 

was also observed for RC from both species at 10 K [19]. The earlier explanation, stated 

above, for the observation of the 400 fs transient bleach was confirmed and supported by 

Breton et al. [19]. In addition, experiments were performed on RC of Rb. sphaeroides 

treated with borohydride (which either removes B^ or turns it into the corresponding 

pheophytin) and these indicated that this 400 fs transient was not due to B^ alone [19]. 

More recent experiments by Holzapfel et al. [34] on RC of Rb. sphaeroides 

conducted at room temperature with 80 fs time resolution have created a new controversy 

concerning the presence or not of an intermediate electron acceptor (before H^). They 

excited within the P870 absorption band and probed to higher energy. Their data (in early 

time, ^lOps) were fit using two time constants of 3.5 and .9 ps instead of just one of 2.8 ps. 

They Ht transient absorption spectra at several different wavelengths effectively with this 

model [34], with the fîrst step occurring in 3.5 ps and the second step in .9 ps. The charge 

separation and electron transfer processes occurred as P*BH=>P^'H=>P^BH" based on 

their analysis [34]. The rapid depletion of P^B'H allowed for a maximum ~15% of this 

species to be created at any one time and this was thought to explain the lack of 

observation of the photo-reduction of the BL previously [34]. Frequency regime studies, in 

particular hole burning experiments, have provided excellent complementary information 

to the ultrafast measurements in the area of the initial act of charge separation and the 

nature of the excited state of the special pair. 

Transient photochemical hole burning (PHB) experiments have been performed on 

RC of Rb. sphaeroides [20,22] and Rps. viridis [21,23] as early as 1985. Boxer et al. 
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[20,21] used PVOH films of both RC while Meech et ai. [22,23] utilized RC suspended in 

glyceroi/water (2:1). These studies, which shall be reviewed here, in combination with the 

time regime measurements, discussed earlier, gave rise to a great controversy concerning 

the initial step of charge separation. Both of these groups of researchers, independently, 

observed similar results for the PHB studies, the formation of broad (FWHM=350-500 

cm"^) holes when they irradiated within the P_ band of the RC [20-23]. In the case of Rps, 

viridis both groups reported unstructured holes (FWHM=350-400 cm"^) whose maxima 

did not depend upon the position of the bum laser (i.e., the hole maxima was stationary) 

for Xg=830-980 nm (Meech et al. [23]) and Xg=975-1013 nm (Boxer et al. [21]). In the 

case of RC of Rb. sphaeroides Boxer et al. [20] reported unstructured holes (FWHM=400-

500 cm"^) whose maxima shifted (-200 cm"^) depending upon A,g (860-895 nm). Meech 

et al. [22] also reported unstructured holes for RC of Rb. sphaeroides, however, they 

reported no movement of the hole maxima with varying Xg (865-890). This discrepancy 

can be explained, as will be shown later in this section, in terms of a solvent effect upon the 

low temperature absorption spectra of P. [52]. It is relevant to point out that Meech et al. 

[22,23] utilized difference transmission spectra while Boxer et al. [20,21] used difference 

absorption spectra for their respective analyses. The distinction between these two 

methods of data presentation being, under most conditions, considerable [26,27], as will be 

made clear later in this section. Regardless, of this fact their interpretation of their results 

were very similar. 

Without the observation of a ZPH, even though the lasers used for the hole burning 

experiments exhibited moderately narrow line widths of 2-4 cm"^, the holewidths (~400 

cm'^) were interpreted as homogeneous and indicative of an ultrafast excited state lifetime, 

~25 fs [20-23]. This time was corroborated by Meech et al. [22,23] by the use of 

accumulated photon echo experiments which indicated a process occurring ^100 fs. Both 

groups [20-23] proposed that this could indicate decay into a C-T state from which the 

charge separated state P^BH" was formed. Boxer et al. [20,21] also proposed a second 

possible explanation for the broad holes which was that the special pair exhibited strong 

linear electron-phonon coupling (so that a ZPH was totally suppressed) and 
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inhomogeneous broadening. With the second proposal. Boxer et al. [21] indicated the 

strong possibility chat the excited state (Sj) for P870 possessed significant charge-transfer 

character. 

Thus together with picosecond measurements performed on RC of Rps. viridis 

[19,49,50] and 7(6. sphaeroides [19,33,45] the early holebuming measùrments [20-23] led 

to a great deal of controversy concerning the excited state of P870/P960, as well as, the 

formation of the charge separated state P^BH". The contrast between the -25 fs and 1 ps 

times indicated by the frequency [20-23] and time [19,33,45,49,50] regime measurements, 

respectively, was a prime motivating factor for initiating new hole burning studies on P870 

of Rb. sphaeroides and P960 of Rps, viridis. The hole burning experiments of Tang et al. 

[24,25] performed on RC of Rps. viridis in several different hosts in 1988 and 1989 

indicated that an extremely weak ZPH could be observed. The width of this feature, -10 

cm"^, indicated a ~1 ps excited state decay time for P960*. This agreed well with the time 

regime measurements [19,49,50], but was at odds with the hole burning studies of Boxer et 

al. [21] and Meech et al. [23]. In addition to the ZPH Tang et al. [24,25] observed three 

other features (holes) which they labelled X, Y and Z. The X hole (upon which the ZPH 

was superimposed when appropriate Xg was used) had a FWHM of -120 cm~^ as did the 

Y hole which was -120 em"^ to higher energy. Y was assigned as the first quanta of a low 

frequency vibrational mode of state X, ©Jp. The Z hole, which was -300 cm"^ higher in 

energy in relation to the X hole, was assigned as an electronic state coupled to X with 

charge transfer character. This Z state was thought to contribute significantly to the 

absorption profile of P960. 

The rather complex analysis of the PHB spectra of Rps. viridis by Tang et al. [24,25] 

has been recently simplified [26,27,52] due to the obtaining of difference absorption hole 

spectra (only difference transmission spectra had been available earlier). The newer data 

[26,27,52] on P960 indicate that the coupling to a low frequency intermolecular vibrational 

mode (-135 cm"^) and moderately strong linear electron-phonon coupling (S-2) to protein 

phonons provides complete agreement with the PHB spectra, the absorption spectra and the 
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ultrafast measurements without coupling to a C-T state. The newer studies on P960 were 

done concurrently with the studies on P870 of Rb. sphaeroides presented here. 

The confusion generated by the seemingly contradictory holeburning results of 

Boxer et al. [20,21] and Meech et al. [22,23] and the ultrafast measurements by Breton et 

al. [19,33,49], Martin et al. [45] and Wasielewski and Tiede [50] are clarified by studies 

performed on RC of Rb. sphaeroides and reported here and the studies performed on RC of 

Rps. viridis [26,52]. 
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EXPERIMENTAL METHODS 

Samples 

The reaction center (RC) samples were graciously provided by Dr. David M. Tiede 

of Argonne National Laboratory. Fresh RC samples were made by dissolving crystals of 

Rb. sphaeroides in a suitably buffered host. Details of the crystallization procedure can be 

found in ref. [6]. The host was glycerol:water glass (2:1) with .8% n-octyl-p-D-

glucopyranoside detergent, 10 mM Tris, 1 mM EDTA, pH=8.0. RC samples in polyvinyl 

alcohol films (PVOH) (~.l mm thick) were also used. The optical density (OD) of the 

primary donor state absorption was less than .5 for the samples used in this study. Care 

was taken to eliminate exposure to light when the sample was at room temperature. 

Cryogenic Equipment 

The samples were placed in a 1 cm (i.d.) path length polystyrene tubes in a brass 

sample holder of local design which allowed optical access to the sample. The cryostat and 

temperature monitoring appartus for the experiments, which were conducted at ^4.2 K, 

have been described in detail in the experimental methods section of Section 1. 

Experimental Apparatus 

A block diagram of the experimental apparatus is shown in Figure 3. Transmission 

spectra were obtained using aim McPherson 2061 monochromator (F=7.0, providing a 

linear dispersion of .833 nm/mm and blazed for the red). The slit width of the 

monochromator was varied as was called for in the experiment. The probe light was 

provided by a tungsten-halogen lamp (600 W) which was dispersed by the monochromator. 

The probe light upon exiting the monochromator was focussed through the sample and 

onto a mechanical shutter (Uniblitz 26L, Vincent Assoc. Inc.) was used to exclude the bum 
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laser from the detection system. The detection was accomplished using a cooled 

Hamamatsu R316-02 photomultiplier tube (enhanced S-1 response). Measurements were 

made using a Stanford Research SR2S0 boxcar averager interfaced with an IBM-PC 

compatible computer. Both shutter and boxcar averager were triggered off a single pulse 

from the zero drift control of the laser. The laser was operated at 16 Hz (or less in certain 

circumstances) to allow for the adequate charge recombination time of 21 ms for the 

species P'hBHQ". 

The bum laser was a excimer (Lambda Physik EMG102) pumped dye laser (Lambda 

Physik FL2002) with a laser linewidth of .2 cm"^ and a pulse width of 10 ns. Using DCM 

laser dye (Exciton) the dye laser output was Raman shifted (H2 gas) to provide tunable 

radiation in the region of interest (850-920 nm) for the experiments which involved 

burning directly into P870. LDS 722 was used for the pheophytin holebuming experiments 

(no Raman shifting was necessary). Pulse energies were ^.4 mj (attenuated with neutral 

density filters where necessary) focussed into a .3 cm x 1. cm spot. 

The boxcar gate was delayed ~2 ms from the laser pulse due to the rise time of the 

mechanical shutter being -1.5 ms. A laser-off transmission spectra was obtained and then 

a laser-on spectra so that a delta transmission (AT) hole spectra could be directly obtained. 

By subtracting the logarithms of the transmission spectra a delta absorbance (AA) spectra 

could be obtained. Care was taken to bleach no more than 20% of the transmittance of 

P870 to avoid effects due to saturation. Higher bum powers resulted in upto ~80% change 

in transmittance. By varying the gate delay and obtaining AA spectra it was possible to 

obtain the lifetime of the charge separated bottleneck state P^BHQ" (21±3ms) (T=4.2 K) 

[19]. 

In the case where linearly polarized spectra were necessary a Glan/Thompson prism 

was inserted into the probe beam, normal to the beam path, and an optical glass polarizer 

(Polarcor, Coming electronic materials) was inserted in the laser beam path (to "clean up" 

its vertical polarization). The Glan/Thompson prism could then be rotated (90°) to provide 

parallel and perpendicular linearly polarized hole spectra. 



www.manaraa.com

128 

The spectra obtained were stored on diskette and analyzed using Spectra Calc 

(Galactic Industries Corp.) and outputed to a HP 7475A plotter (Hewlett Packard Co.). 
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Figure 3. Block diagram of experimental apparatus. L=!ens, M=mirror, IM=infrared 

mirror, ST=raechnical shutter, R=Raman shifter, S=sample, P=prism, C=liquid 

helium cryostat, F=filter, FMT=photomultiplier tube 
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ADDITIONAL RESULTS 

In this section transient photochemical hole burned (PHB) spectra for the RC of Rb. 

sphaeroides in glycerol/NGP and PVOH/NGP will be presented. Although the hole 

spectra will encompass the entire Qy spectral region, the focus will be primarily on the Qy 

band of P870 in this section. Figure 4 presents the 4.2 K absorption spectra of the Qy 

region of RC for both solvents. The peaks are labelled in the conventional manner [52] 

with HL and indicating the unresolved pheophytin bands and and the 

unresolved bacteriochlorophyll monomer bands. These assignments should be thought of 

as approximate since electronic structure calculations have suggested that coupling of the 

six pigment states may occur [53]. The low energy shoulder on the bacteriochlorophyll 

monomer band (810 nm) is thought to be analogous to the low energy shoulder state 

present at 850 nm in the absorption spectra of RC of Rhodopseudomonas viridis which is 

suspected to be P^, the upper exciton component of the special pair by Vermeglio et al. 

[54]. 

The PVOH host has two very apparent effects on the absorption of the RC. First a larger 

degree of inhomogeneous broadening for each spectral feature is noted. Secondly, the 

absorption of P870 is blue shifted significantly, ~200 cm"\ This second effect is noted for 

RC of Rps. viridis, as well when comparing glycerol md PVOH hosts [52]. The glycerol 

host provides the smallest amount of inhomogeneous broadening to the spectrum [52]. It 

may be possible to reduce Fj further by using minimally strained RC crystals, but given the 

high OD of currently available crystals [55] experiments would need to be done in the 

reflection mode. 

The low energy shoulder on the P870 band is visible in the glycerol host but not in 

the PVOH host. The shoulder is emphasized in Fig. 5 which is a 4.2 K absorption 

spectrum of P870 (glycerol/NGP) with a second derivative as an insert. This is due to the 

lesser amount of inhomogeneous broadening imparted by the glycerol host. This feature, 

whose nature will be discussed latter in this section, is also noted for Rps. viridis in several 
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Figure4. Absorption spectra of the Qy region, T=4.2 K: R b .  s h a e r o i d e s  A.) 

glycerol/NGP (FWHM=470 cm"^), B.) PVOH/NGP (FWHM=550 cm'b 



www.manaraa.com

132 

0.38" 

0.18" 

-0.02 

WAVELENGTH (nm) 

910 880 850 
1 1 

/ 
\ \ \\ 
\\ \ \ \ \ / \ \ 

! \ \ 
r 

\ \ 
r \ \ 

\ \ 
\ X 

/] 
// 

1 1 1 1 
10800 11000 11200 11400 11600 

WAVENUMBERS (cm-1) 

1 1 8 0 0  

Figure 5. Calculated and experimental absorption spectra for P870. Parameters for 

calculated spectrum (—): T (one phonon profile width)= 30 cm"', (mean 

phonon frequency)= 30 cm"'. S (Huang-Rhys factor)=2.2, Fj (inhomogeneous 

line broadening)=170 cm"', (Ogp=115 cm"', Sgp=1.5. See text for details 
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Figure 6. Hole burned spectrum for P870, T=4.2 K. Solid arrows locale Xg = 890, 907, 

910, and 912 nm for spectra 1 -4. All spectra are AA except for 2a and 3a which 

are AT spectra corresponding to 2b and 3b, respectively. Resolution ^8 cm"'. 

Dashed arrows in 2a and 2b indicate approximate positions of co^p and (Og p 

satellites 
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Figure 7. Calculated and experimental hole spectra for P870 (lower frame, AA), Xg 

nm. See Fig. 5 caption and text for details. Upper frame is AT 

=912. 
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Figure 8. Calculated hole burned spectra for P870 using the same parameters as in Fig. 5. 

Xg= 1.) -50 cm"^ 2.) -25 cm"', 3.) 10 cm'^4.) 35 cm*'. 5.) 220 cm'^ 6.)615 

cm"'. A,g given relative to maximum of zero site distribution (SDF). 

Maximum of SDF, 11013 cm"' 
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different liost-detergent systems [24,25]. The feature will be shown to be an intrinsic part 

of the absorption spectrum of the RC [26]. 

Transient PHB Spectra of P870 

Figure 6 presents four AA (absorbance) transient hole spectra for Rb. sphaeroides 

(glycerol/NGP), T=4.2 K. Two AT (transmission) spectra are also presented to 

demonstrate the improved resolution possible in the transmission mode when the sample's 

optical density is high enough. A narrow zero phonon hole (ZPH) is evident in the spectra 

where Xg (bum wavelength) was located near the center of the cOgp band. This ZPH is 

gradually lost as is shifted higher in energy as is predicted in the theory of strong linear 

electron-phonon coupling and inhomogeneous line broadening [44]. 

The AA spectra obtained with Xg=910.0 and 907.0 nm show hole spectra rich in 

structure. In addition to the ZPH and the hole corresponding to (o^p (the shoulder state 

observed in absorption) a broad hole (400 cm"^) is present which can be seen to consist of 

a progression of vibronic holes -120 cm"^ in frequency. The first quanta, mjp, is actually 

more prominent than co^p. The dashed arrows in Fig. 6 indicate the first and second quanta 

of this vibrational mode, a>|p and a>|p, in the hole spectra. Similar structured hole spectra 

were obtained for Rps. viridis [26] (incl. a ZPH) showing the progression of a -135 cm"^ 

vibrational mode with the first quanta, cojp, being more intense than co^p, and three quanta 

are clearly visible, (ojp, (Ogp, and to^p. The ZPH observed here can give information 

concerning the excited state decay time for P870 (P870*) and this aspect will be addressed 

in the next subsection. 

It is clear that moderately strong coupling (Sgp=l) to a vibrational mode (co^p) is 

necessary to account for the underlying structure observed in the absorption spectra and 

hole spectra for P870. From the weakness of the ZPH observed moderately strong linear 

electron-phonon coupling (S=2) to a protein phonon is also indicated. The proposal of 

ultra-fast (fs) decay of P870* to a C-T slate made by Won and Friesner [40,41] and others 

[20-23] finds no support from the spectra presented here, since this type of behavior would 
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preclude the observation of a ZPH. The theory of Hayes and Small [43,44] was developed 

to fit the unstructured P870 and P960 hole spectra of Boxer et al. [20,21] and in those 

circumstances the mean phonon approximation was used (with coupling to a single protein 

phonon). It is obvious here that both a protein phonon, (Djg, and a second low frequency 

vibrational mode, (o^p, must be utilized. The intramolecular vibrational modes for Bchl a 

have Franck-Condon factors ^.02 [56] and thus are not considered intense enough to 

warrant consideration in understanding the principal features of the hole spectra. The 

modifications to the theory of Hayes and Small [43,44] are straightforward and shall be 

shown here. 

Using the mean phonon frequency approximation Hayes et al. [44] express the low 

temperature absorption profile of a single site as 

^ S'e"® 
L(îl—I/) = e ^ ̂  — rwm) (j) 

where v is the zero-phonon transition frequency and (0^ is the mean frequency for phonons 

which couple to the electronic transition. S is the Huang-Rhys factor and the Franck-

Condon factors for the r=0,l,2,... phonon transition are governed by the Poisson 

distribution |S*^e"®/rl ),. The Franck-Condon factor for the zero-phonon transition is e"®, 

and its profile is Lorentzian (1^) with a FWHM=Y> which is the homogeneous linewidth of 

the zero-phonon line. The lineshape for the one-phonon profile is Ij and is centered at 

imOjjj with a FWHM of F. The one-phonon profîles for electronic transitions of molecules 

in glassy hosts carry a width of ~30 cm*^ typically, and the profiles for antenna Chi a and b 

confirm this [56]. To a good approximation the profile can be taken to be Gaussian. Eq. 1 

is valid for coupling to pseudo-localized phonons or a distribution of host phonons 

governed by a suitable density of states. For the latter case and a phonon profile governed 

by a Gaussian, the width of the r-phonon profile, centered at (D+m^) is given by 

For preliminary fits of the P870 hole spectra presented here Lorentzians for 1^ (r^l ) were 
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used [26,52] with widths governed by the Gaussian values, r^/^r in order to derive an 

analytic expression for the hole profile. Subsequently, a method was found to incorporate 

the use of Gaussians in the expression for the phonon lineshapes without increasing the 

computing time unreasonsably. The most realistic phonon lineshape was found to be a 

convolution of the two lineshapes with a Gaussian half (^^V-KOq,) and a Lorentzian half 

(^+oi>Qj), with the Lorentzian width being F. For simplicity the derivation is done using 

Lorentzian lineshapes for the phonon profiles. 

Eq. 1 can be modified to include coupling to the Ogp mode: 

j=0 
(2 )  

+  — i — " "  
r=l 

where Sgp is the Huang-Rhys factor for (Ogp. The assumption that the electron-phonon 

coupling (S) is independent of the (o^p-mode occupation number j is made in deriving Eq. 

2. In addition and F are to be considered independent of j. However, the 

homogeneous linewidths Yj of the zero-phonon fimctions 1J may differ due to, for example, 

rapid vibrational relaxation of the (Ogp (j^l) levels. 

For disordered hosts a Gaussian distribution of zero-phonon transition frequencies of 

width Fj is the appropriate choice, but in order to obtain an analytic expression for the hole 

profile a Lorentzian is utilized, NQ('U-'Ugj)/N when N is the total number of absorbers and 

Vm is the mean zero-phonon frequency. The fits featured here have been accomplished 

using a Gaussian distribution of zero-phonon transitions by making use of an 

approximation, however, the derivation will be completed using a Lorentzian lineshape for 

this quantity for simplicity. The absorption spectrum is calculated as the convolution of 

this distribution function with the single site absorption profile L(O-D). The absorption 

cross-section, laser intensity and photochemical quantum yield are defined as a, I, <(>, 

respectively. Following a bum for time T 
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Nr(«/ -  fm) = No(t/  -  »/m)e 
—arI(^rL(u>g —I/) (3) 

where Oy is the laser burn frequency and L(a>Q-v) is given by Eq. 2. To obtain the 

absorption spectrum, A(T), following the bum one must convolve Eq. 3 with L(£2-'U) and 

integrate over v. For notational simplicity, Eq. 1 rather than Eq. 2 is used in what follows. 

The modifications of the resulting hole shape function necessary to take into account the 

(Ogp-progression will simply be stated. Thus, 

For simplicity the short burn time limit is employed so that the exponential can be 

expanded as l-oI(j)TL((ùQ-'U). This approximation need not be made, but the resulting 

expressions are cumbersome if it is not. The hole spectrum in the short bum time limit is 

simply 

One cannot assume that Nq(\)-Vq,) is constant in Eq. S because the holes of interest have 

widths comparable to FIntegration of Eq. 5 yields 

<7'I<^rL(a>g —f) (4) 

• / rfl/No(f - - rWn.)4'(Wg - U - /w^) 

(5) 
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The qualitative implications of Eq. 6 are discussed by Hayes et al. [44]. In the same 

paper model calculations with realistic values for r, OOq,, y and Tj are given with S varying 

from .5 (weak coupling) to 8 (strong coupling). In Eq. 6, and r^=r^/^r (r^l). For 

strong coupling (S^) and the intensity of the ZPH relative to the broad hole is 

given approximately by e"^^. For this value of (Og, the ZPH is located near the center of 

the broad and more intense hole upon which it is superimposed. For rpScOg, a bum with 

a>Q located on the low and high energy sides of the absorption profile produces broad hole 

profiles that are shifted to the blue (higher energy) and red (lower energy), respectively, of 

©B-

The modifications of Eq. 6 required to take into account the co^p-progression are as 

follows: first, an additional double summation Z (exp(-Sgp)S^p/j!) (exp(-Sgp)Sj|p/j' I) must 

be included and Tp Tj, replaced everywhere by and Tj/j,, respectively. Thus, Yj 

determines the relaxation frequency of the zero-phonon level associated with the jth 

member of the oo^p-progression; second the energy denominators are modified by the 

replacements of ra^=>ra)m+ja)gp and r' tOm=>r' (Um+jtOgp. 

For the calculations it was found sufficient to terminate the j- and r- sums at 5 and 

10, respectively. A large number of the "parameters " (y, S, (0^,, T, Sgp, (Ogp, Tj) are 
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actually experimentally determined or least estimated to a very good approximatiom. (Ogp 

can be estimated within ~10 cm"^ by viewing the hole spectra and Sgp (the Franck-Condon 

factor for (Ogp) can also be obtained in a similar manner, y and S are obtained from the 

ZPH and noting the relative intensity of the ZPH with respect to the (Ogp hole, respectively. 

(it)gj has very recently been determined directly using temperature dependent hole spectra 

[27]. S and can also be estimated by making use of the fluorescence spectra and the 

approximate relationship. Stokes shift^lSOg^. The Stokes shift for Rb. sphaeroides is 

~140 cm'^ [57]. Fj can be estimated by the absorption spectrum and the following 

relationship, rgyg=rj+S(OQ^+Sgp(i)gp. In addition, the amount of inhomogeneous 

broadening plays a pivotal role in the movement of the hole maxima with varying CDg. 

Qualitatively, the increase in homogenous broadening stated for the RC in PVOH is clearly 

indicated by the increased movement of the hole maxima (see Fig. 10) versus, the glycerol 

host. The hole maxima for RC in glycerol shifts -180 cm"^ while in PVOH the maxima 

shifts ~220 cm"\ The point being that these "parameters" are not free to assume any 

possible values to ensure a "good fit", they must be consistent with the experimental data in 

ail accords. 

The calculated hole spectra are presented in Figs. 7 and 8. The parameter values are 

listed in the figure captions. Figure 5 features a calculated spectra near (center of 

zero-phonon distribution) and the experimental hole spectrum for comparison. The fit can 

be seen to be quite good. Figure 8 presents a complete set of hole spectra obtained by 

varying COQ. The characteristics of this group are very similar to the experimental spectra 

in Fig. 6. The gradual loss of the ZPH as is shifted higher in energy due to the 

increasing probability for multi-phonon excitation (nonline narrowing) is shown as is the 

gradual loss of structure in the broad hole as Xg shifts toward the blue. These traits are in 

accord with the experimental data (Fig. 6). The PVOH hole spectra (Fig. 10), although 

they do not show structure, do increase in width ~100 cm'^ as Xg shifts to the blue. 

Allowance was made for sub-ps decay of cDgp (j^l) levels with (Fermi-Golden rule 

prediction with cubic intermolecular anharmonicity).This dependence is necessary to 
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accouni for the lack of ZPHs in the (o|p, co^p ... holes. Attempts to observe such narrow 

features were made with no success. The additional dephasing for co^p was 200 fs. 

The absorption spectra calculated with the same parameters as the hole spectra was 

plotted in Fig. 5. The fit on the low energy side and the peak are quite good. The fit on the 

high energy side shows that more absorption intensity is present than can be accounted for 

using a two mode approximation. Even though the Franck-Condon factors for the 

intramolecular modes are very small (^.02) they may add some intensity in the \)m+(300-

500 cm"^) region. The composition of the P870 band can be stated as 70% homogeneous 

(ScOm+SgpCOgp) and 30% inhomogeneous (Fj). 

Zero-phonon Holewidths 

For P870 (glyceroI/NGP) the average of several narrow range scans (2 cm"^ read 

resolution), with Xg=907-912 nm, yield a holewidth of 8.5±2.0 cm"^ (corrected for read 

resolution). Two representative holes are presented in Fig. 9 A&B (Xg=909.0 and 911.0 

nm). This holewidth indicates a P870* decay time of 1.3±.3 ps. This value is in good 

agreement with the 1.2±.I ps value obtained at T=10 K by ullrafast measurements [19j. 

Additionally, this agreement makes the statement that vibrational relaxation in the excited 

state of P870 (P870*) occurs < Ips. This is due to the fact that the ultrafast experiments 

prepare P870* vibrationally excited, while hole burning measures decay from the zero-

point. This provides additional justification for providing for sub-ps decay of co^p (jkl). 

Similar experiments for P960 of Rps. viridis also provided good agreement between 

holebuming results and time domain values (.8±.l ps for both [26]). In addition, transient 

PUB experiments performed on PS IIRC yielded a decay time of 1.9±.2 ps [58] which is in 

good agreement with that obtained by time regime measurements at 15 K [59]. If P870 

relaxed to a charge transfer state prior to charge separation there would not be agreement 

between the holebuming data and the time regime measurements [26]. 
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Figure 9. ZPH at 4.2 K for P870: 1.) XB=909 nra (11001 cra'^). 2.) Xb=911 n™ (10977 

cm'b- Resolution = 2 cm"' for both spectra 
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Figure 10. Hole burned spectra for Rh. sphaeroides (PVOH/NGP), T=4.2 K, Xg=860, 

875,885,900,905 lun (ordered from top to bottom). Resolution = 8 cm"' 
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Site Excitation Energy Correlation Effects 

Recent nonphotochemical hole burning experiments on the antenna-protein complex 

from Prosthecochloris aestuarii have proven that there is a high degree of site excitation 

energy correlation between different exciton components of a subunit characterized by 

strong excitonic interactions [60,61]. With this in mind consider the transient PHB spectra 

for Rb. sphaeroides (PVOH/NGP) in Fig. 10. Only one feature of the Qy-region of the 

transient spectra lying higher in energy than P870 exhibits an observable dependence on 

X,g. It is the hole or "bleach" [54] that corresponds to the low energy shoulder(LES) of the 

(Bl.Bm) monomer absorption band. The Àg-dependence is most pronounced for the 

PVOH films because of the additional -100 cm"* of inhomogeneous broadening they 

provide relative to the glycerol glass hosts. In Fig. 10 the right and left vertical lines are 

centered at the centroids of the P. and LES holes of the lowest cog-value used. The LES 

hole [or Rb. sphaeroides lies at 811.3 nm (12330 cm'b. Transient experiments on the RC 

oîRps. viridis yielded similar results concerning the LES located at 848.0 nm (11790 

cm"*). Vermeglio et al. [54] assigned the LES state of Rps. viridis to P^, the upper exciton 

component of the Qy-transition of the special pair. It is apparent that that the LES hole 

tracks Xg for hoiixRb sphaeroides and Rps. viridis in a like manner. Therefore, there exists 

a significant amount of positive correlation between the site excitation energies of the P_ 

and LES states. Because of the studies on P. aestuarii [60,61] and because of lack of 

existence of any studies showing any line narrowing on molecular systems that establish 

any correlation for excited states of different electronic parentage, the results presented 

here support the assignment of the LES made by Vermeglio et al. [54] and apply it to Rb. 

sphaeroides. 

The other bands appearing in Fig. 10 to higher energy are due to electrochromic 

shifting of the accessory Bchl a and BPheo a absorption bands which occurs when 

P^BHQ" is produced. It is interesting that these bands exhibit no Xg dependence. This 

should not be interpreted as meaning that they do not have any contribution from the 

special pair (i.e., that they are pure). An alterate explanation is that they could have 
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ultrafast excited state lifetimes (i.e., that they are homogeneously broadened) due to 

downward EET processes [27,45,49]. This particular aspect has been investigated using 

photochemical hole burning and reported on recently [27]. 

Polarized Hole Burning Studies 

The use of polarized photoselection techniques at low temperature to determine 

relative orientations for pigments in the RC and antennas of phoiosynthetic bacteria has 

been taking place for many years, even before a structure of the RC existed [54,62-70]. By 

using two beams of linearly polarized light, one to effect a photochemical change and a 

second weaker one to probe the absorption or transmission spectrum, the approximate 

angle between the pigments could be obtained. Linear dichroism (LD) experiments also 

provided similar information when the samples were prepared in the appropriate manner 

[66,69]. An important advantage of the technique of polarized photoselection is that it can 

be used when the sample is in an amorphous host such as a glass while LD relies on 

utilizing oriented samples. The results presented here, where a laser is used to site 

selectively photo-bleach P870 at 4.2 K, are the first reported study of their kind. 

The laser provides polarized (in this case vertical) irradiation for the photo-oxidation 

of P870 and the formation of the charge separated state P^BHQ". The changes in the 

transmission spectrum are then probed using light that is polarized vertical (parallel) and 

horizontal (perpendicular). The results of a typical set of spectra are presented in Fig. 11 

for RC of Rb. sphaeroides in Gly/NGP (Xg=860 nm). AA|| is the hole spectra measured 

parallel lo the bum laser. AA|_ is the hole spectra measured perpendicular to the bum laser. 

It is an important point that no substantial differences in the polarized spectra (AA|| and 

AAj^) were noted by allowing Xg to vary across the P870 absorption band (860=>910 nm) 

(i.e., the degree of polarization of the P870 band does not vary with Xg). A quantity of 

interest when considering the polarized hole spectra in Fig. 11 is the degree of polarization. 
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Figure 11. Polarized hole burned spectra (AA| | and AAj^) for Rb. sphaeroides 

(Gly/NGP), T=4.2 K, Xg=860 nm. Resolution, 8 cm"^. See text for details 
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p. It is defined as, 

p = (AA| I - AAj^)/(AA| I + AA]^) = (3cos^a -1 )/(cos^a +3) (7) 

Where a is the angle between the excited and detected optical transitions. This is the well 

known Perrin eq. [71]. For a single transition, such as P870, a perfect value of p would be 

.5. This is the value obtained by allowing a=0 in eq. 7. In terms of the measured hole 

burned spectra a ratio of AA|| to AA[ should be 3 if a single transition is considered with 

perfect polarization. A value of .35 was obtained for p in Fig. 11 at peak of the P870 

bleach (this value is constant within experimental error across the entire P870 band for a 

given Xg). This is less than the optimal value of .5 for p but it compares favorably with 

that obtained by other nonsite selective polarized photoselection studies [65,67]. There are 

several factors that can lead to the observation of a less than ideal degree of polarization 

including the following: depolarization of the probe and/or bum beams by interaction with 

the cryostat windows, the degree(%) of bleaching and the presence of more than one state 

absorbing in the same spectral region. The first reason listed above, depolarization of the 

bum and/or probe beams, is most likely the cause of the observed discrepancy in Fig. 11 

with regard to the degree of polarization. The degree, or percent, bleaching is extremely 

important because if the transition is bleached too much p=*0 [71]. If the changes in the 

transmission spectra are confined to AT^20%, as they are here, the maximum amount of 

information can be obtained from the hole burned spectra. The last reason listed above is 

perhaps the least probable due to the rather good agreement obtained by Tang et al. [52] 

and Johnson et al. [26,27] in fitting the P870 absorption and hole profiles with a single 

transition (with a strong progression of a low frequency dimer mode). However, Johnson 

et al. [26] did not completely exclude the possible presence of a weakly absorbing charge-

transfer state in the same spectral region. 

The remaining portion of the spectra, which is due to electrochromic shifting of the 

accessory pigment bands, is not as easily interpreted because of the many overlapping 

absorption bands in the 760-820 nm region of the spectrum. The unresolved ^ band is 
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at ~800 nm with the unresolved HL band at -760 nm. The voyeur Bchl can be seen to 

be oriented predominantly parallel to P870 while the pheophytins appear to be oriented 

mainly perpendicular to P870. When there are overlapping transitions calculation of p is 

relatively meaningless. The relative orientations for the RC pigments obtained by 

Vermelgio et al. [70] for Rb. sphaeroides are in general agreement with the results 

presented here. Vermeglio et al. [70] determined the following relative orientations based 

on photoselection experiments using 900 nm (and other wavelengths) of light at a variety 

of temperatures to bleach P870: pheophytin oriented >70° relative to P870, Bchl oriented 

~37° with respect to P870 and the bleaching of a transition at -805 nm of perpendicular 

orientation relative to P870. The transition at 805 nm which they refer to has been 

assigned as P^ [52], the upper exciton component of P870, and should, if it has oscillator 

strength, be oriented 90° with respect to P. (P870). These assignments are in general 

agreement with those obtained by Gagliano et al. [69] using linear dichroism (LD) and 

Clayton et al. [68] who utilized both LD and polarized photoselection. The x-ray structure 

for Rb. sphaeroides [5-7] confirmed the above earlier experiments with respect to the 

relative orientations of the pigments in the RC. The comparison of the pigment structure 

for the RC of Rps. viridis as arrived at via LD data and as determined by single crystal x-

ray diffraction resulted in good agreement between the two structures [72]. 
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PAPER I. PRIMARY DONOR STATE MODE STRUCTURE AND ENERGY 

TRANSFER IN BACTERIAL REACTION CENTERS 
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ABSTRACT 

Temperature-dependent photochemical hole burning data for P870 of Rb. 

sphaeroides reaction centers (RC) are reported which lead to a determination for the mean 

frequency of the protein phonons which couple to the optical transition. Utilization of this 

frequency, Wgp -25-30 cm-1, together with improved functions for the single site (RC) 

absorption lineshape and inhomogeneous broadening are shown to lead to significant 

improvement in the theoretical fits to the hole and absorption spectra (including those of 

P960 of Rhodopseudomonas viridis). Time-dependent P870 hole spectra are reported 

which provide additional evidence that the previously observed zero-phonon hole is an 

intrinsic feature of P870 for active RC. Transient spectra obtained by laser excitation into 

the accessory Q^-absorption bands of the RC are presented which show an absence of both 

line narrowing and a dependence on the location of the excitation frequency. These results, 

which are consistent with ultra-fast energy transfer processes from the accessory states, are 

discussed in terms of earlier time domain data. 
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INTRODUCTION 

Recently the underlying structures of the primary donor state (special pair) 

absorption profiles P870 and P960 of the bacterial reaction centers (RC) from 

Rhodopseudomonas viridis and Rb. sphaeroides were revealed by transient photochemical 

hole burning experiments [1,2]. Both are dominated by a fairly lengthy Franck-Condon 

progression in an intermolecular special-pair marker mode (co^p) which exhibits an 

intensity maximum for the one-quantum transition. For P870 and P960 the theoretical fits 

to the structured hole spectra led to (Ogp-values of ~150 and 125 cm-1 for P960 and P870, 

respectively [2]. The corresponding S (Huang-Rhys)-factors are Sjp = 1.1 and 1.5. The 

origin (co°p) of the cogp-progression in the hole spectra for P870 and P960 correlates with 

the low energy shoulder of the low temperature absorption profile which is readily 

observed for glass solvents that minimize inhomogeneous broadening. Fig. 1. Although 

the dynamical nature of the marker mode has not been determined, the fact that it is 

intermolecular [1,2] and that the primary donor state (P870*, P960*) is believed to possess 

significant intra-dimcr charge-transfer character [3-6], suggest that it is highly localized on 

the special pair. 

The primary donor state also exhibits appreciable coupling to low frequency protein 

phonons (mean frequency co^, Huang-Rhys factor S) as evidenced by the weakness of the 

zero-phonon hole (ZPH) associated with the ta^p band. Simulations of the hole spectra 

presented in refs. 1 and 2 were performed with an analytical expression for the hole profile 

which takes into account coupling to both the marker mode and protein phonons. This 

expression is valid in the short bum time approximation [7] and, for example, a zero-

phonon excitation frequency distribution function (SDF, width rp governed by a 

Lorentzian. Although the principal features of the spectra (including their bum wavelength 

dependence) could be accounted for, significant deviations occurred on the low energy tails 

of both the absorption and hole spectra. These deviations were suggested to be due mainly 

to the utilization of a Lorentzian for the SDF. Although good initial estimates for many of 
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the theoretical parameters (e.g., ©gp, Sgp, S, Tj) could be obtained from the spectra, this 

was not the case for 0)^. Thus, we report here a direct determination of cOgj. This value is 

used in simulations which avoid the approximations employed in refs. 1 and 2. The results 

reported here provide significantly improved agreement with experiment. Nevertheless, 

the basic physical model remains unchanged. The refinement of the values for the physical 

parameters presented is viewed as important for future studies directed towards 

determination of the marker mode frequency in the ground electronic state, its dynamical 

nature and the role of the special pair geometry change in the excited state in primary 

charge separation. 

The 2TH widths reported earlier [1,2] yielded P870* and P960* decay times in good 

agreement with those determined earlier [8,9] by time domain measurements at 10 K, thus 

proving that there is no ultra-fast electronic relaxation [10,11] from zero-point pf P* which 

precedes formation of the charge separated state P^BPheo", where BPheo is 

bacteriopheophytin. We present here time-dependent hole burning data for P870 which 

show that the decay kinetics of the ZPH and the broader and more intense hole upon which 

it is superimposed are the same within experimental uncertainty. This experiment was 

performed to provide even more convincing evidence [1] that the ZPH is an intrinsic 

feature of the spectra for functioning RC. 

The last part of the paper presents the results of experiments stimulated by the 

reports that the line narrowing feature of hole burning could be used to study site excitation 

energy correlation effects between different Qy-absorption bands of the bacterial reaction 

centers [1,2]. In these experiments transient spectra for the entire Qy-region of Rb. 

sphaeroides and Rps. virdis were obtained as a function of laser bum frequency (tOg) tuned 

across P870 and P960. Significant positive correlation was observed between the primary 

donor state absorption band and the band that appears as a low energy shoulder on the 

BChl monomer band (near 850 and 810 nm for Rps. viridis and Rb. sphaeroides, 

respectively). Since such correlation is only expected between states which have similar 

electronic parentages, it was argued that [1,2] the positive correlation is consistent with the 

assignment for the "shoulder state" of Vermeglio et al. [12] to the upper dimer component 
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(P+) of the special pair. Pertinent to the present paper is the observation that the other 

features in the transient AA hole spectra are invariant to cog-timing. These features are due 

to electrochromic shifts of the so-called BChl and BPheo monomer bands, the shifts arising 

form the formation of the P^Q" (Q s quinone) state which serves as the bottleneck for the 

hole burning. We will refer to these bands as accessory. There are two apparent 

explanations for the invariance: one is that the accessory bands correspond to states tliat 

have little contribution from the Qy-states of the monomers comprising the special pair; the 

other is that these bands are largely homogeneously broadened. Spectra are presented here 

which were obtained by burning directly into accessory Qy-bands. The results are shown 

to be consistent with the second explanation and support the fîndings of the femtosecond 

studies which show that energy transfer from the accessory states occurs in < 100 fsec 

[8,9]. 
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EXPERIMENTAL 

Fresh samples of RC from Rb. sphaeroides were prepared by dissolving RC crystals 

in a suitably buffered host. Details concerning the crystallization procedure can be found 

in ref. 13. The RC were prepared in glycerol;water glass (2:1) with 0.8% n-octyl-P-D-

glucopyranoside detergent (NOP), 10 mM Tris, 1 mM EDTA, pH = 8.0. The optical 

density (OD) of the samples utilized in this study was 0.25 at the peak of the primary donor 

state absorption. 

The experimental apparatus is described fully in ref. 1. Briefly, bum irradiation 

(linewidth 0.2 cm-1) was provided by Raman shifted (H2 gas) output of an excimer-

pumped dye laser. Lambda Physik EMG 102 and FL-2002, respectively. A pulse 

repetition rate of 16 Hz or less was used. A Stanford Research SR 250 boxcar averager 

was utilized to obtain the gated spectra (gate width of 150 ps). The AT (transmission) 

spectra were obtained by subtracting laser-on and laser-off spectra. AA (absorbance) 

spectra were obtained by subtracting the logarithms of the laser-off transmission spectra 

and the laser-on transmission spectra. Samples were mounted and cooled in a Janis model 

8-DT super vari-temp liquid helium cryostat. Temperature measurements were made with 

a Lakeshore Cryotronics DTC-500K calibrated silicon diode. 

For the study of the temporal decay of the P870 hole profile the position of the 150 

|is observation window was varied relative to the laser pulse by adjusting the gate delay of 

the boxcar. Delay times of 2,5,10,15 and 20 ms were employed. A decay time of 21 ± 2 

ms for the P^Q" bottleneck state had been determined earlier [14]. 



www.manaraa.com

157 

RESULTS 

Simulations and Temporal Evolution of the P870 and P960 

Hole Profiles 

The theory of Hayes and Small [15] for the hole profile, which is valid for arbitrarily 

strong linear electron-phonon coupling, was developed to interpret the first hole burned 

spectra reported for P870 and P960 [16,17]. These important early experimental results 

demonstrated that there is a significant homogeneous broadening contribution to the 

absorption profiles but that the maximum of the single broad (-400 cm-1) hole exhibits a 

weak dependence on the location of (Og within the primary donor absorption profile. Since 

the marker mode progression was not observed, Hayes et al. [7] utilized a single mean 

phonon frequency approximation to account for the results of refs. (16,17). The single site 

(RC) absorption profile has the form 

where v is the zero-phonon transition frequency and u)g is the mean frequency for phonons 

which couple to the electronic transition. The Huang-Rhys factor is S and the Franck-

Condon factors for the r = 0, 1,... phonon transitions are governed by the Poisson 

distribution (S^e'^/r!)^. Thus, the Franck-Condon factor for the zero-phonon transition is 

exp(-S); its profile is a Lorentzian (1^) with a FWHM = y, which is the homogeneous 

linewidth of the zero-phonon line. The lineshape for the one-phonon profile is 1| and is 

centered at v + COqj with a FWHM of T. It is well known that the one-phonon profiles for 

electronic transitions of molecules imbedded in amorphous solids carry a width of about 30 

cm-1 and the profiles for antenna Chi a and b are no exception [18]. When the one-phonon 

profile is taken to be a Gaussian the width of the r-phonon profile (centered at v + rm^) is 

given by F,. = r^^F. In order to derive an analytic expression for the hole profile 

r=l 
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Figure 1. Calculaled and experimental absorption spectra for P870 and P960. T = 4.2 K, 

resolution = 4 cm-1. A) P960 in glycerol glass (LDAO detergent). B) P870 in 

glycerol glass (NOP detergent) 
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Figure 1. Continued 
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Table I. Parameters for theoretical fit 

®SP^ SGP Û)M S R FI S,OT ZSICOI FWHM(P) 

P960 134 1.1 25 2.1 40 120 3.2 200 390 

P870 115 1.5 30 2.2 30 170 3.7 240 410 

P960 150 1.1 40 1.5 50 120 2.6 225 460 

P870 125 1.5 35 2.0 50 130 3.5 260 495 

P960 "" 80 4.5 40 150 4.5 360 530 

P870 mmm «««#«» 80 4.5 50 350 4.5 360 680 

^All frequencies and widths are in cm"^, 
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Figure 2. Temperature dependence of the integrated intensity of the zero phonon hole of 

P870: experimental data (dots with experimental error bars) and theoretical fit 

(smooth curve). Xg = 909.5 nm. (See text for details) 
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Lorentzians for lf(r ̂ 1) were used [7] with widths governed by the Gaussian values, i.e., 

r^%. 

Equation 1 is readily modified to include coupling to the -mode: 

L(n-y) = ̂  

+  ^  j — —  r W j n  —  j u i g p )  
r=l 

where Sgp is the Huang-Rhys factor for (Ogp. In writing Eq. 2 the reasonable assumption 

that the electron-phonon coupling (S) is independent of the (ogp-mode occupation number j 

is made. Similarly, the mean phonon frequency (Oqj and T, the width of the one-phonon 

profile, are considered independent of j. However, the homogeneous linewidths ^ of the 

zero-phonon functions may differ due, for example, to rapid vibrational relaxation of the 

0)jp (j S: 1) levels. 

We define NQ(V-Vm)/N where N is the total number of absorbers and is the mean 

zero-phonon frequency. The absorption spectrum is calculated as the convolution of this 

distribution function with the single site absorption profile L(O-v). The integrated 

absorption cross-section, laser intensity and photochemical quantum yield are denoted by 

o, I and <t>. Following a bum for time x 

Nr(y - »/m) = No(t' -

where (OQ is the laser bum frequency and L(O>Q-V) is given by Eq. 2. To obtain the 

absorption spectrum, A^, following the bum we must convolve Eq. 3 with L(O-v) and 

integrate over v, i.e.. 

AR( n )  =  J  DI/NO(I/ - W 
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With Eq. 4 the hole spectrum following a bum for time x is given by Aq(£î) - A^(A). In 

our previous calculations Eq. 4 was simplified by making the short burn time 

approximation where the exponential is expanded as 1 - aI(t>xL(tag-v) so that an analytic 

expression for the hole spectrum could be obtained. We do not db so here because a 

physically reasonable Gaussian is employed for the zero-phonon excitation energy 

distribution function of width âl and a more realistic line shape given to the one-phonon 

profîle. In regard to the latter we note that the one-phonon profile for Chi a of the antenna 

complex of PS I exhibits a single maximum at ~2S cm-1 and is asymmetric, with the 

higher energy half broader (and more tailing) than the lower energy half [18]. For Chi a 

the width (F) of the one-phonon profile is -30 cm-1 and its shape is determined by the 

product of the protein phonon density of states and a frequency dependent electron-phonon 

coupling function [19]. The profile can be approximated by a Gaussian for the low energy 

half and a broader Lorentzian for the high energy half and, thus, we have employed such a 

profile for the present P870 and P960 calculations. 

Unfortunately the phonon sidebands cannot be resolved in the P870 and P960 hole 

spectra. Thus, in refs. 1 and 2 the Stokes shifts were used to estimate oo,^. This is less than 

satisfying and so we report here, for P870, a direct determination of (0^. Our approach 

involves measuring the intensity of the ZPH, cf. Section I, as a function of burn 

temperature. As discussed in ref. 7 and as can be seen by making the short burn time 

approximation in Eq. 4, the effective Franck-Condon factor for the ZPH is, to a good 

approximation, given by exp (-2S) at O K (when cog = v^, as is the case for our 

experiments). Using long established theory [20], it follows that exp[-2S(2<n^>p + 1)] is 

the effective Franck-Condon factor for the ZPH at temperature where <nx>T = 

[exp(ha)g^/kT) -1]"' is (he phonon occupation number(x is defined here to be m^). The 

results of our experiment are shown in Fig. 2. The fit to the data points (ZPH with 

acceptable signal/noise ratio could not be measured for Tg > 14 K) with the T-dependent 

Franck-Condon factor leads to co^ = 23 ± 4 cm-1. We note that this value is in the range 



www.manaraa.com

164 

1040 

WAVELENGTH (nm) 

1000 960 

c 3 

•ë 

ui 

c 
3 

•e 
>2. 

I 
< 

H 1 1 
A 

1 
1 1 / 
1 

• \ 
# \ 

• I 
1 1 
1 // 

I 1 Jy 

Y/ 
1 1 1 

9600 10000 10400 

WAVENUMBERS 

Figure 3. Transient photochemical hole burned spectra (solid line) and theoretical f i ts  

(dashed line). A) Rps. viridis (glycerol glass/LDAO), Xg = 1020 nm; AT 

spectrum (upper frame), AA spectrum and fit (lower frame). B) Rb. sphaeroides 

(glycerol glass/NGP), A-g = 910 nm; AT spectrum (upperframe), AA spectrum 

and fit (lower frame). See Table I and text for details of fits. First five 

overtones of (Ogp were included in the calculations. T = 4.2 K, Resol. = 8 cm-1 

for all spectra. Solid arrows indicate bum frequency. Dashed arrows indicate 

first and second quantum ca^p-satellite holes. The low energy portion of the 

earlier theoretical fits from ref. 1 and 2 are present as dots (P960) and stars 

(P870) in the lower two frames 
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Figure 3. Continued 
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Figure 4. Transient bole burned spectra for P870 using variable gate delay. 2 ms, S ms, 

and 10 ms delay holes are shown with 2 ms being the largest and 10 ms being 

the smallest change in absorbance. T = 4,2 K, Resol. = 3 cm-1. = 908 nm. 

A -15% change in transmission was obtained with a delay of 2 ms 
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observed for pigments in antenna complexes [18,21,22] and, thus, it appears that protein 

phonons of this mean frequency are ubiquitous in coupling to electronic transitions. 

Examples of our improved simulations to the (Og-dependent P870 and P960 AA 

(absorbance) hole spectra are shown in Fig. 3. The upper spectra are the corresponding AT 

(transmission) spectra. The values of the parameters used for the simulation are given in 

Table I. For the spectra shown, ODQ is located near the center of the marker mode origin 

band (low E shoulders of Fig. 1) and provides optimum line narrowing [1,2]. By 

comparing the results in Fig. 3 to those of refs. 1 and 2 it can be seen that employment of a 

Gaussian for the inhomogeneous line broadening contribution in the present work has led 

to significantly improved fits. For convenience, the significant deviations of our earlier fits 

on the low energy tail of the spectra are also shown in Fig. 3. The magnitude of the 

deviations between the low energy sides of the experimental and simulated absorption 

spectra reported in ref. 2 are comparable. The present calculations also provide a more 

accurate description of the Wg-dependence of the hole spectra than that given in ref. 2 

[23,24]. This is also true for the absorption spectra. Fig. 1. 

To conclude this sub-section we show in Fig. 4 results of an experiment designed to 

determine whether the ZPH coincident with (Og for P870 exhibits the same decay kinetics 

as those for the broad hole upon which it is superimposed. The amplitude of the broad hole 

decreases by 37% as the delay time is increased from 2 to 10 ms (the decay time of 

P870"^Q" is 21 ± 2 ms). The corresponding percentage for the ZPH is estimated to be 

-40%. The agreement is reasonable and provides further evidence that the ZPH is an 

intrinsic feature of the primary donor state. 

Transient Spectra for Excitation into Accessory Pigment 

Bands, Absence of Line Narrowing 

With reference to the last two paragraphs of the Introduction, Fig. 5 shows some of a 

series of transient spectra for the accessory pigment Qy- region of Rb. sphaeroides 
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Figure 5. AA (absorbance) spectra for hole burning in the pheophytin Qy bands. Bum 

wavelength: A) 750 nm. B) 760 nra. C) 765 nm. D) 770 nm. T = 4.2 K. 

Resol. = 3 cm-1. Dashes on right vertical axis indicate AA = O for each 

spectrum 
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Figure 6. Absorption spectra for Rb. sphaeroides (glycerol glass/NGP) in accessory 

pigment Qy region. T = 4.2 K. Resol. = 4 cm-1. Bum frequencies indicated by 

solid arrows. The peak at -12500 cm-1 (802 nm) is the Bchl a monomer (3^, 

Bj^) band and the peak at ~ 13200 cm-1 (760 nm) is (he BPheo a monomer 

(HL, HJ^) band 
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Figure 7. Hole burned spectra in accessory Qy region for A) Xg = 750 nm. B) Xg = 907 

nm. T = 4.2 K. Resol. = 3 cm-1. Dashes on right vertical axis indicate AA = O 

for each spectrum 
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obtained for a series of cog-values ranging from the high to low energy sides of the BPheo 

absorption band at 760 nm, see absorption spectrum given in Fig. 6. The contributions to 

this band from the BPheo of the M and L branches [2] are not resolved but are responsible, 

in part, for its asymmetry. Figure 5 demonstrates that the electrochromically shifted (red) 

BPheo feature near 13,000 cm-1 due to P+QT is invariant to cog. Furthermore, this feature 

is essentially identical to that obtained by exciting directly into P870, Fig. 7. Thus, the 

BPheo band does not exhibit the line narrowing expected for a band whose width is 

dominated by inhomogeneous broadening. A similar result has been observed for the BChl 

accessory band of Rps. viridis [23]. The absence of line narrowing for the bacterial RC 

accessory bands provides a striking contrast to the RC of PS II [21], for which intense and 

persistent nonphotochemical 2TH and resolved phonon-sideband holes are observed for the 

Chi and Pheo accessory pigments. The width of the asymmetric BPheo band in Fig. 6 is 

290 cm-1 which sets a lower limit of ~20 fs for the decay time of BPheo* (on either the M-

or L-side). We note that the intramolecular modes in the 700-1100 cm-1 region which 

build on the accessory BchI band at 802 nm can be expected to contribute to the tailing on 

the high energy side of the BPheo band. Using the recently determined Franck-Condon 

factors for Chi a [18] in the above region we estimate a FWHM of ~250 cm-1 from the two 

quasi-degenerate BPheo. Accepting that there is a large homogeneous lifetime broadening 

contribution to the BPheo band, we draw upon our calculations on the (Og-dependence of 

the P870 and P960 hole spectra to estimate the contribution from inhomogeneous 

broadening to the above 250 cm-1 BPheo bandwidth. In that a change of the 

electrochromically shifted BPheo spectrum not be observed as (Og is tuned across the 

absorption band it is necessary that the inhomogeneous width be about one-half or less of 

the homogeneous width. Taking one-half as the upper limit, we obtain from 250 cm-1 

inhomogeneous and homogeneous contributions of -80 and 170 cm-1, respectively. The 

latter yields a BPheo* lifetime of 30 fs [25]. An immediate question is whether a value of 

80 cm-1 for the inhomogeneous broadening is reasonable since we have determined an 

inhomogeneous linewidth of 170 cm-1 for P870, Table I. We believe it is since the lowest 

exciton state of the special pair should be far more sensitive to structural variations from 
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RC to RC. It is germane to note that the width of the BChlj^^ band in Fig. 6 at 802 nm is 

200 cm-l and that from the sharpest low temperature absorption spectrum for the RC of 

Rps. viridis we are aware of [26], the widths of the BChlj^ L, BPheoj^ and BPheoL bands 

are 205,240, and 260 cm-l, respectively. From Table I the inhomogeneous linewidth of 

P960 is 120 cm-l. If it is assumed that this inhomogeneous width is aiso reduced by about 

one-half for the Rps. viridis accessory bands, one obtains ~30 fs lifetimes for BChlj^ L, 

BPheoj^, and BPheoj^. Although the above arguments are approximate, we believe that 

~30 fs lifetimes are very reasonable estimates for the accessory pigment states of both RC. 

If the lifetimes of BPheo* of Rb. sphaeroides and BChl* of Rps. viridis were as long as 

100 fs, a change of their electrochromically shifted profiles with Og or line narrowing 

should have been observed. 
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DISCUSSION 

Having studied the hole spectra of P870 and P960 in several different glass-

detergent systems we think it is unlikely that their resolution can be improved significantly 

with glassy hosts beyond that shown here and in refs. (1,2). The linear electron-phonon 

and -marker mode coupling are fundamental properties of the RC, only Fj (inhomogeneous 

width) is subject to experimental manipulation. It is unlikely that Fj can be appreciably 

reduced from our values for glass hosts given in Table I. It is appropriate, therefore, to 

consider the evolution of our simulations which have been stimulated by improvements in 

resolution of the hole spectra. The P870/P960 parameter set values given in Table I are 

given in chronological order, from the bottom up. From the outset [15] our model was 

based on the premise that the large homogeneous broadening of P870 and P960, indicated 

by the earliest hole burning experiments [16,17], was due to linear electron-phonon 

coupling, and not ultra-fast electronic relaxation of P* [10,11,16,17]. The structured hole 

spectra discussed here and in refs. 1 and 2 prove that the former is the correct picture (the 

marker mode is, strictly speaking, a localized or resonant phonon [27] since it is 

intermolecular and of low frequency relative to the intramolecular modes). The lowest 

entries in Table I do not contain values for oogp and Sgp because the hole spectra available 

at that time were unstructured, i.e., a single mean phonon frequency approximation was 

utilized with COJQ = 80 cm-1 and S = 4.5 for both P870 and P960. These values and those 

for Fj led to calculated spectra (for different cog-values) in reasonable agreement with the 

spectra of Boxer and his group [16,17]. The value of Fj = 150 cm-1 for P960 is similar to 

those determined later while the value of 350 cm-1 is considerably higher. The latter is a 

consequence of the fact that the P870 absorption width reported in ref. (16) for a polyvinyl 

alcohol film was imusually large (-630 cm-1). It is instructive to compare the value of cOjjj 

= 80 cm-1 with the values of co^j and ©gp determined later. From Table I one observes 

that the mean of (w^ + Ogp) is roughly equal to 80 cm-1. Furthermore S|Qjaj = Sgp + S 

from the two upper pairs of entries is not so different from 4.5. These rough agreements 
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are not surprising since, in the theory (irrespective of the number of modes employed), the 

sensitivity of the centroid frequency of the total hole profile on B depends on the ratio of 

Fj to ZSjCDj. The spectra of Boxer and his group [16,17] give a good indication of the 

sensitivity. In the limit as r^=>0 the hole spectrum becomes independent of cOg. 

In comparing the two upper P870/P960 entries of Table I it should be noted that the 

parameter values were determined by fitting to the same experimental spectra. The middle 

set was determined with the short burn time limit of the theory and Lorentzians for the 

inhomogeneous distribution and multi-phonon profiles, see Section in.A., were employed. 

The present calculations (upper set in Table I) avoid the short bum time approximation, 

employ more physically realistic inhomogeneous and phonon lineshape functions and 

utilize mean phonon frequency (0)^) values in the range determined by experiment. The 

latter are similar to those observed for pigments of antenna complexes [18,21,22]. 

According to our analysis, it is the utilization of the improved spectral functions that is 

primarily responsible for the better agreement with experiment. Nevertheless, the 

important aspects of the physics remain the same. We note that the ultra-fast relaxation 

times for the a^p (j ̂  1) ZPH levels given in the caption to Table I are discussed in ref. (1). 

It was the failure to observe, in the experimental spectra, the (Ogp (j ^ 1) ZPH satellite holes 

associated with the ZPH (at cog) of tOgp that indicated the ultra-fast relaxation. Without 

such relaxation, the simulations clearly show the satellite ZPH structure. Furthermore, 

experiments in which tOg was located in the vicinity of the (Ogp component of the 

absorption profile failed to produce a ZPH at Og [23,24]. The implication that marker 

mode relaxation occurs faster than primary charge separation is consistent with the 

agreement between the time domain and hole burning decay times for P*. 

In condensed phase spectroscopy the demarcation between weak and strong linear 

electron-phonon coupling is traditionally set at Sfyjgj = 1. For = 1, the Franck-

Condon factors for the zero-phonon and one-phonon transitions are equal. From Table I 

one observes that the coupling for P870 and P960 is strong, e.g., for = 3 the Franck-

Condon factor for the zero- phonon line of the origin band is only 0.05. 
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Earlier it had been stated that reasonable estimates for several of the theoretical 

parameters were afforded by the experimental data. Obviously (Ogp and Sgp are two. But S 

is also since, according to the theory [7,15], the ratio of the integrated intensity of the ZPH 

to that of the broader (o^p hole it is superimposed on is =exp(-2S). Furthermore, an 

experimental determination for to^ of 23 ± 4 cm-1 is available (Fig. 2). With these 

estimates and the observed width of the primary donor absorption profile, one can estimate 

Fj. From our simulations we have found that the optimal parameter values are within 

about 20% of the original estimates. Thus the simulations are best viewed as a refinement 

procedure for the experimental estimates. Turning now to the energy transfer properties of 

the higher energy Qy-states of the bacterial RC we note that Jean et al. [28] have shown 

that Forster theory falls far short of accounting for the remarkably short (<100 fs) lifetimes 

of the "accessory" pigment states or the upper special pair state (P^). Inadequate spectral 

overlap and large energy spacings between the relevant states make it very unlikely that 

Forster theory, even if modified, will work. In fact, it is incorrect to apply this "weak 

coupling" theory to relaxation from to P. (primary donor state) since the excitonic 

splitting far exceeds the energy fluctuations of these states due to pure dephasing from bath 

fluctuations. An alternative mechanism is afforded by the theory of Davydov [27]. Here 

one would start with zero-order pigment aggregate states which are diagonal with respect to 

the excitonic Hamiltonian, Hg^(o), for a suitable static aggregate geometry. Relaxation 

between eigenstates of Hg^(o) would be induced by variations of produced by 

intermolecular displacements associated with modes Q, i.e. (gHg^/ÔQ)QQ and higher order 

terms. The modes expected to be most effective are those involving rotational 

displacements of the pigments [29]. Such a mechanism is known to lead to decay of the 

upper triplet dimer (Davydov) state to the lower (by 25 cm-1) Davydov state of the 

anthracene crystal (by one-phonon emission) in 5 ps [30]. Recently, hole burning studies 

on the antenna complex of Prosthecochloris aestuarii have been performed [22,31]. Pair-

wise excitonic interactions in the basic subunit of this complex, which contains 7 BChl 

molecules, are as large as -200 cm-1 [32]. The experimentally observed exciton structure 

in absorption occurs over a -500 cm-1 wide spectral region. The shortest exciton level 
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decay times for this system are ~250 fs [22,31]. This value can be viewed as consistent 

with that for anthracene under the expectation that decay is proportional to the exciton 

bandwidth squared and that in P. aestuarii the relaxation occurs by two-phonon emission. 

The excitonic interactions between pigments in the RC (other than that between the two 

Bchl of the special pah-) are no larger than those in the P. aestuarii subunit [33]. With this 

in mind and a consideration of the RC accessory state level spacings, it is not apparent that 

one can reconcile the fact that decay of the accessory states of the RC is an order of 

magnitude faster than in P. aestuarii. The problem is more evident when one attempts to 

understand a <100 fs direct decay from the upper (P+) to lower (P.) dimer states of the 

special pair. In/îpj. viridis the dimer or exciton splitting is -2000 cm-1, which is larger 

than the marker mode or intramolecular vibrational frequencies. Thus, one is in the strong 

coupling limit [34-36] of the Davydov theory. If, for example, one were to invoke only the 

marker mode for P^ => P. relaxation, creation of ~20 quanta of this mode would be 

necessary for the process. This is a very high order and improbable event (as in Herzberg-

Teller vibronic coupling theory [37], a 2-quantum process is one to two orders of 

magnitude less probable than a 1-quantum process, etc.) Invoking a high frequency (-1500 

cm-1) intramolecular mode plus several quanta of a low frequency intermolecular dimer 

mode would not appear to be a solution either since the former would not be expected to 

provide significant modulation of tlie resonance energy transfer matrix element. Although 

approximate, the above scaling argument indicates that the Davydov mechanism cannot 

account for the ultra-fast energy transfer processes of the RC. 

A third possibility is that the "dark" charge-transfer (CT) states, which have been 

invoked to explain the primary charge separation process [38], provide a broad distribution 

of level structure through the Qy-region which serves as a conduit for energy transfer from 

the higher energy optically allowed states to P.. The fact that such CT states would be 

characterized by very high S-values for intermolecular modes is consistent with a broad 

distribution. Within this model decay would be viewed in terms of a breakdown of the 

Born-Oppenheimer approximation. Hopefully, electronic structure calculations may 

eventually be able to speak to the viability of this model. 



www.manaraa.com

177 

CONCLUSION 

An experimental determination of the mean frequency for protein phonons which 

couple to the primary donor state together with the avoidance of approximations to the 

theory of Hayes and Small made earlier have led to a significant improvement of the 

theoretical fits to the absorption and hole spectra of P870 and P960. The optical 

reorganization energies for P870 and P960 due to low-frequency modes (phonons, marker 

mode) are about one-third the value determined for the 100% CT state of the anthracene-

pyromellitic acid dianhydride crystal [39] but an order of magnitude greater than for Chi in 

antenna complexes [18,22,31]. This result provides strong support for the suggestion from 

Stark data that [4,5,6] the primary donor state possesses significant CT character. The 

reported marker mode frequencies of 115 and 134 cm-1 are for P870* and P960*; 

determination of the corresponding ground state frequencies would be important for 

elucidation of the dynamical nature of the special pair mode. 

New experimental results are used to determine decay times of ~30 fs to the 

accessory Qy-states of the bacterial RC due to downward energy transfer. An approximate 

scaling argument is presented which indicates that the Davydov energy transfer 

mechanism, like the Forster mechanism [28], cannot account for the ultra-fast decays. An 

alternative mechanism, which invokes intermediacy of a broad distribution of level 

structure due to charge- transfer states, is suggested for future consideration. 
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ADDITIONAL CONCLUSIONS 

The nature of the special pair mode, oo^p, can be identiHed as intermolecular. The 

hole burning results of Gillie et al. [56] on Chi a and b in photosystem I antenna showed 

that the Franck-Condon factors for the intramolecular vibrational modes of these molecules 

were ̂ .04 [56]. This, coupled with the recent narrow line fluorescence spectra for Bchl a 

[73] lead to an estimate of the F.-C. factors for the Bchl a of ^.02 [56]. This is obviously 

much less than the S„_=1.55 observed here. In addition, no intramolecular modes with a !>P 
sufficiently low frequency (115 cm"^) were determined in the studies of Renge et al. [73]. 

Thus, (Ogp is identified as an intermolecular vibrational mode, a dimer mode. The 

dynamical nature of this special pair marker mode is, as yet, undetermined. 

The conclusion of Hayes et al. [44] based on fitting the unstructured hole spectra of 

P870 and P960 [20,21] that the holes could be understood in terms of inhomogeneous 

broadening (RC to RC heterogeneity) and linear electron-phonon coupling to low 

frequency protein phonons is essentially correct, and no evidence can be found to support 

the theory of Won and Friesner [41,42]. Won and Friesner [41,42] invoked coupling to a 

C-T state, ultrafast decay before charge separation, which would result in no observation of 

a zero-phonon hole as was clearly observed here and also for P960 of Rps. viridis [26,52]. 

It is pertinent to state that the unstructured hole spectra for P870 and P960 obtained by 

Boxer et al. [20,21] and fit by Hayes et al. [44] were generated using PVOH hosts. 

Experiments performed on samples prepared in a like manner (results reported here for 

P870/PVOH and elsewhere for P960/PVOH [26,52]) yielded similar results to Boxer et al. 

[20,21] with the notable exception that a weak ZPH was observed for selective burn 

frequencies (on the low energy shoulder) for P960 [18,49]. The width of this ZPH was 

-13. cm"^ [26,52]. No ZPH was observed for.v/j/jae/wWes in PVOH. 

The interpretation of Tang et al. [24,25] for their hole burning results on the RC of 

Rps. viridis involved two states, one being an excited state with a strong progression of a 

130 cm"' vibrational mode ((Ogp) and the second being a C-T state. The C-T state was 

~300 cm"' higher in energy than their oo^p hole. This assignment has to be questioned in 
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view of the results presented here and those presented elsewhere for P960 [18,49]. Tang et 

al. [24,25] made use of AT spectra obtained with relatively high OD samples (.6) which 

tend to give unfaithful representations of the AA spectra (see Fig. 6). The excited state of 

P870 is thought to contain some C-T character as evidenced by its moderately strong 

electron-phonon coupling (monomer chlorophylls typically exhibit weak electron-phonon 

coupling [56]), however, this differs from the proposal of Won and Friesner in that they 

coupled a neutral excitonic state to a C-T manifold (with ultra-fast decay). The charge 

transfer character in this case would be due to an intra-dimer charge transfer state such as 

more likely a linear combination of the two since they are 

indistinguishable, if C2 symmetry holds) and not to a state such as P^"H. The presence 

of an additional C-T state(s) cannot be excluded based on the results presented here, but the 

oscillator strength of that state would have to be small compared to co^p (and, of course, 

these state(s) could not affect the charge separation kinetics). 

The spectral hole burning studies performed on RC from Rb. sphaeroides, Rps. 

viridis and Chi. aurantiacus [26,27,52,74] have demonstrated that the hole burning 

characteristics of the primary electron donor states are similar for these three bacterial RC 

and defined by moderately strong linear electron-phonon coupling to the protein and site 

inhomogeneous broadening. Similar characteristics have also been noted for RC from 

green plants, PSI [75] and PS II [58], however, no special pair mode was identified for 

these RC. The identification of a strong Franck-Condon progression of a lo frequency 

(100-150 cm'l) intermolecular mode in the first excited state of the PED has been 

accomplished for Rb. sphaeroides, Rps. viridis and Chi. aurantiacus(ihis work and ref. 

(26,27,52,74)). The energy transfer times for the accessory pigments of the RC from Rb. 

sphaeroides have been determined. The extent to which interaction with a charge transfer 

state affects energy transfer, charge separation and electron transfer within the RC of Rb. 

sphaeroides is still unresolved. The results presented here do however place a limit on the 

absorption oscillator strength of a C-T state in the RC of Rb. sphaeroides in the 850-930 

nm spectral range. 
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GENERAL CONCLUSIONS 

Temperature-dependent absorption and fluorescence spectra and line-narrowed 

fluorescence and excitation spectra are reported for a synthetically prepared chlorophyll 

dimer. This molecule is a model for the special pair in bacterial reaction centers. Data 

obtained for four solvents of widely differing polarity show that the dimer exists in two 

conformations (A and B) and that excited state relaxation from A to B onsets near the glass 

transition temperature (Tg). Molecular modelling suggests that the conformations are 

related by "bicycling" of the two single bonds joined to the vinyl group linkage. For a 

solvent of sufficiently high polarity (DMF), the excited state of B is shown to access a new 

radiationless decay channel for TS:Tg. A charge-transfer state is suggested to be important 

for this decay. The model presented is shown to provide a qualitative explanation for the 

frequency domain and recently obtained picosecond and fluorescence quantum yield room 

temperature data. 

Persistent spectral hole burning is reported for the antenna complex of the green 

sulfur bacterium Prosthecochloris aestuarii. This complex contains three subunits which 

contain seven Bchl a molecules. The hole burning data are shown to be consistent with a 

excitonically coupled system. The data also provide the magnitude of linear exciton-

phonon coupling of the optical transitions associated with the two lowest energy absorbing 

components, the number of exciton components in the Qy spectral region and their Qy 

transition energies. In addition, the excited state (Sj) decay times of the exciton 

components are presented. A recent proposal concerning the existence of a third crystal 

structure is discussed and support for it is found in the data presented. 

Structured photochemical hole burned spectra are presented for P870 of the reaction 

center (RC) of Rhodobacter sphaeroides. A special pair marker mode Franck-Condon 

progression is identified. The zero-phonon hole yields P870* decay times in good 

agreement with the time domain values. Site excitation energy selection is used to 

establish correlation between a higher energy RC state of Rb. sphaeroides and P870. 

Temperature dependent hole burning data for P870 are reported which lead to the 
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determination for the mean frequency of the protein phonons which couple to the optical 

transition. Utilization of this frequency, (0^-25-30 cm"^, together with a special pair 

mode, oogp-l 15 cm"\ with the theory of Hayes and Small lead to theoretical fits of the 

P870 absorption and hole spectra. Time dependent P870 hole spectra are reported which 

provide additional evidence that the previously observed zero-phonon hole is an intrinsic 

feature of P870 for active RC. Transient spectra obtained by laser excitation into the 

accessory Qy-absorption bands of the RC presented which show both an absence of line 

narrowing and an absence of any dependence on the location of the excitation frequency. 

These results, which are consistent with ultra-fast energy transfer processes from the 

accessory states, are discussed in terms of earlier time domain data. 
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